七年級我們曾學過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關問題,下面是大家非常熟悉的一道習題:
如圖1,已知,A,B在直線l的同一側,在l上求作一點,使得PA+PB最小.
我們只要作點B關于l的對稱點B′,(如圖2所示)根據對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點,就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
小題1:如圖3,正方形ABCD的邊長為2,E為BC的中點, P是BD上一動點.連結EP,CP,則EP+CP的最小值是_____
___;
運用:
小題2:如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應該是
;
操作:
小題3:如圖5,A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最。ú粚懽鞣,保留作圖痕跡)