【題目】如圖,在ABCD中,∠ABC的平分線交AD于點(diǎn)E,過點(diǎn)DBE的平行線交于BCF

(1)求證:△ABE≌CDF;

(2)若AB=6,BC=8,DE的長(zhǎng)

【答案】(1)證明見解析(2)2

【解析】(1)首先由平行四邊形的性質(zhì)可得AD∥BC,AB=CD;∠A=∠C,再由條件利用SAS定理可判定△ABE≌△CDF;(2)由(1)可知 ∠EBF=∠AEB由平行線的性質(zhì)和角平分線得出∠AEB=∠ABE,即可得出結(jié)果.

解:(1)證明:法一:

∵四邊形ABCD是平行四邊形

∴AD∥BC,AD=BC,∠A=∠C,,

∵BE∥DF,

∴四邊形BEDF是平行四邊形, 

∴DE=BF,

∴AD-DE=BC-BF,

即:AE=CF,

∴△ABE≌△CDF(SAS). 

法二:∵BE//FD ∴∠EBF=∠DFC

∵AD//BC ∴∠EBF=∠AEB

∴∠AEB=∠DFC

ABCD中,∵∠A=∠C,AB=CD

∴ △ABE≌△CDF

(2)由(1)可知 ∠EBF=∠AEB

又∵BE平分∠EBF

∴∠EBF=∠ABE

∴∠AEB=∠ABE

∴AE=AB=6

又∵BC=AD=8

∴DE=2

“點(diǎn)睛”本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定;熟記平行四邊形的性質(zhì),證出AE=AB是解決(2)的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,小明和父母一起開車到距家200千米的景點(diǎn)旅游.出發(fā)前,汽車油箱內(nèi)儲(chǔ)油45升,當(dāng)行駛150千米時(shí),發(fā)現(xiàn)油箱剩余油量為30升.(假設(shè)行駛過程中汽車的耗油量是均勻的.)

1)寫出用行駛路程x(千米)來表示剩余油量Q()的代數(shù)式;

2)當(dāng)x=300千米時(shí),求剩余油量Q的值;

3)當(dāng)油箱中剩余油量少于3升時(shí),汽車將自動(dòng)報(bào)警.如果往返途中不加油,他們能否在汽車報(bào)警前回到家?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1,拋物線與x軸交于A(﹣10),B30),頂點(diǎn)為D1,﹣4),點(diǎn)Py軸上一動(dòng)點(diǎn).

1)求拋物線的解析式;

2)在y軸的負(fù)半軸上是否存在點(diǎn)P,使BDP是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

3)如圖2,點(diǎn)在拋物線上,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為選拔優(yōu)秀選手參加瑤海區(qū)第八屆德育文化藝術(shù)節(jié)“誦經(jīng)典”比賽活動(dòng),九年級(jí)(1)、(2)班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)?nèi)鐖D所示

1)根據(jù)圖示填寫下表

班級(jí)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

九(1

85

   

85

九(2

   

80

   

2)結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;

3)計(jì)算兩班復(fù)賽成績(jī)的方差,并說明哪個(gè)班五名選手的成績(jī)較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

(1)(-3)-(-2)+(-4)

(2)(-)-(-)-|-|-(-)

(3)-23÷×(-)2

(4)()×(-36)

(5)-14-×

(6)(-1)4+5÷(-)×(-6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.試判斷線段EC與BF的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為EAF平分線上一點(diǎn),PBAE于B,PCAF于C,點(diǎn)M,N分別是射線AE,AF上的點(diǎn),且PM=PN.

(1)如圖1,當(dāng)點(diǎn)M在線段AB上,點(diǎn)N在線段AC的延長(zhǎng)線上時(shí),求證:BM=CN;

(2)在(1)的條件下,直接寫出線段AM,AN與AC之間的數(shù)量關(guān)系 ;

(3)如圖2,當(dāng)點(diǎn)M在線段AB的延長(zhǎng)線上,點(diǎn)N在線段AC上時(shí),若AC:PC=2:1,且PC=4,求四邊形ANPM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組乘一輛汽車沿公路檢修線路,約定向東走為正,向西走為負(fù)。某天從A地出發(fā)到收工時(shí),行走記錄(長(zhǎng)度單位:千米)為:+15,-2,+5,-1,+10,-3。

⑴問收工時(shí),檢修小組在A處的哪一邊,距A地多遠(yuǎn)?

⑵若汽車每千米的耗油為升,求從出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上AB兩點(diǎn)分別對(duì)應(yīng)有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a-b|,利用數(shù)形結(jié)合思想回答下列問題:
1)數(shù)軸上表示210兩點(diǎn)之間的距離是____,數(shù)軸上表示2-10兩點(diǎn)之間的距離是

____
2)數(shù)軸上,x-2兩點(diǎn)之間的距離是|x+2|_____;
3)若x表示一個(gè)有理數(shù),則|x-1+|x+2|有最小值嗎?若有,請(qǐng)求出最小值,若沒有,寫出理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案