【題目】如圖,將邊長為4的等邊三角形OAB放置于平面直角坐標(biāo)系xOy中,反比例函數(shù)y=(x<0)的圖象與AB邊交于點(diǎn)C,與BO邊交于點(diǎn)D,若CD⊥BO,則k的值為( )
A. -B. C. D.
【答案】B
【解析】
過點(diǎn)D作DE⊥x軸于點(diǎn)E,過點(diǎn)C作CF⊥x軸于點(diǎn)F,設(shè)OE=a,根據(jù)等邊三角形的性質(zhì)找出點(diǎn)D、C的坐標(biāo),再利用反比例函數(shù)圖像上的坐標(biāo)特征得出關(guān)于a的一元二次方程,解出a,再求出k的值.
過點(diǎn)D作DE⊥x軸于點(diǎn)E,過點(diǎn)C作CF⊥x軸于點(diǎn)F,如圖所示,設(shè)OE=a,DE=,
∴BD=OB-OD=4-2a,BC=2BD=8-4a,AC=AB-BC=4a-4,
∴AF=AC=2a-2,CF==(2a-2),OF=OA-AF=6-2a,
∴D(-a,a),C(2a-6, (2a-2))
∵點(diǎn)C、D都在反比例函數(shù)y=上,
∴-a·a=(2a-6)·(2a-2)
解得a=2或a=,
當(dāng)a=2時(shí),C,D,B三點(diǎn)重合,故不符題意,
故a=
∴D(-, )
∴k=-× =
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線y=﹣x+8與x軸交于點(diǎn)A,與直線y=x交于點(diǎn)B,點(diǎn)P為AB邊的中點(diǎn),作PC⊥OB與點(diǎn)C,PD⊥OA于點(diǎn)D.
(1)填空:點(diǎn)A坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ,∠CPD度數(shù)為 ;
(2)如圖②,若點(diǎn)M為線段OB上的一動(dòng)點(diǎn),將直線PM繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角與∠AOB相等,旋轉(zhuǎn)后的直線與x軸交于點(diǎn)N,試求MBAN的值;
(3)在(2)的條件下,當(dāng)MB<2時(shí)(如圖③),試證明:MN=DN﹣MC;
(4)在(3)的條件下,設(shè)MB=t,MN=s,直接寫出s與t的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,BC=2cm,AB=2cm,點(diǎn)E在邊AB上,點(diǎn)F在邊AD上,點(diǎn)E由A向B運(yùn)動(dòng),連結(jié)EC、EF,在運(yùn)動(dòng)的過程中,始終保持EC⊥EF,△EFG為等邊三角形.
(1)求證△AEF∽△BCE;
(2)設(shè)BE的長為xcm,AF的長為ycm,求y與x的函數(shù)關(guān)系式,并寫出線段AF長的范圍;
(3)若點(diǎn)H是EG的中點(diǎn),試說明A、E、H、F四點(diǎn)在同一個(gè)圓上,并求在點(diǎn)E由A到B運(yùn)動(dòng)過程中,點(diǎn)H移動(dòng)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣4k+4與拋物線y=x2﹣x交于A、B兩點(diǎn).
(1)直線總經(jīng)過定點(diǎn),請(qǐng)直接寫出該定點(diǎn)的坐標(biāo);
(2)點(diǎn)P在拋物線上,當(dāng)k=﹣時(shí),解決下列問題:
①在直線AB下方的拋物線上求點(diǎn)P,使得△PAB的面積等于20;
②連接OA,OB,OP,作PC⊥x軸于點(diǎn)C,若△POC和△ABO相似,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,3),B(-2,1),C(1,2).
(1)把△ABC繞原點(diǎn)O旋轉(zhuǎn),使點(diǎn)C與點(diǎn)C1(2,-1)重合,畫出旋轉(zhuǎn)后的△A1B1C1,并寫出點(diǎn)A1,B1的坐標(biāo);
(2)在(1)的條件下,若△ABC是按順時(shí)針方向旋轉(zhuǎn)的,求點(diǎn)A到點(diǎn)A1經(jīng)過的路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化工廠開發(fā)新產(chǎn)品,需要用甲、乙兩種化工原料配制A、B兩種產(chǎn)品共40桶,技術(shù)員到倉庫進(jìn)行準(zhǔn)備,發(fā)現(xiàn)庫存甲種原料300升,乙種原料170升,已知配制A、B兩種產(chǎn)品每桶需要的甲、乙兩種原料數(shù)如下表:
若配制一桶A產(chǎn)品需要小時(shí),配制一桶B產(chǎn)品需要小時(shí),求完成這兩種產(chǎn)品的開發(fā)最少需要多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知AB為⊙O的直徑,CD切⊙O于C點(diǎn),弦CF⊥AB于E點(diǎn),連結(jié)AC.
(1)探索AC滿足什么條件時(shí),有AD⊥CD,并加以證明.
(2)當(dāng)AD⊥CD,OA=5cm,CD=4cm,求△OCF面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.運(yùn)動(dòng)員甲測試成績表
測試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運(yùn)動(dòng)員甲測試成績的眾數(shù)和中位數(shù);
(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?(參考數(shù)據(jù):三人成績的方差分別為S甲2=0.8、S乙2=0.4、S丙2=0.8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com