【題目】如圖,在正方形外取一點(diǎn),連接、、,過(guò)點(diǎn)的垂線交于點(diǎn).若,,下列結(jié)論:①;②;③點(diǎn)到直線的距離為;④;⑤正方形.其中正確的是(

A.①②③④B.①②④⑤C.①③④D.①②⑤

【答案】D

【解析】

利用同角的余角相等,易得∠EDC=∠PDA,再結(jié)合已知條件利用SAS可證兩三角形全等;利用中的全等,可得∠APD=∠CED,結(jié)合三角形的外角的性質(zhì),易得∠CEP90°,即可證;過(guò)CCFDE,交DE的延長(zhǎng)線于F,利用中的∠BEP90°,利用勾股定理可求CE,結(jié)合△DEP是等腰直角三角形,可證△CEF是等腰直角三角形,再利用勾股定理可求EF、CFRtCDF中,利用勾股定理可求CD2,即是正方形的面積;連接AC,求出△ACD的面積,然后減去△ACP的面積即可.

解:DPDE,

∴∠PDE90°,

∴∠PDC+∠EDC90°,

∵在正方形ABCD中,ADC90°,ADCD,

∴∠PDC+∠PDA90°,

∴∠EDC=∠PDA,

在△APD和△CED

SAS)(故正確);

,

∴∠APD=∠CED

又∵∠CED=∠CEA+∠DEP,∠APD=∠PDE+∠DEP,

∴∠CEA=∠PDE90°,(故正確);

過(guò)CCFDE,交DE的延長(zhǎng)線于F,

DEDP,∠EDP90°,

∴∠DEP=∠DPE45°,

又∵中∠CEA90°,CFDF,

∴∠FEC=∠FCE45°,

,∠EDP90°,

CFEF,

∴點(diǎn)C到直線DE的距離為(故不正確);

CFEF,DE1

∴在RtCDF中,CD2=(DEEF2CF2

S正方形ABCDCD2(故正確);

如圖,連接AC,

∵△APD≌△CED,

APCE,

SACDSACPS正方形ABCD×AP×CE×()﹣××.(故不正確).

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長(zhǎng)為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時(shí),才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對(duì)斜坡CD進(jìn)行改造,在保持坡腳C不動(dòng)的情況下,學(xué)校至少要把坡頂D向后水平移動(dòng)多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC 中, ,D、E是斜邊BC上兩點(diǎn),且DAE=45°,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到,連接.列結(jié)論:

①△ADC≌△AFB;②△ ≌△;③△≌△;

其中正確的是( )

A. ②④ B. ①④ C. ②③ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年全球葵花籽產(chǎn)量約為4200萬(wàn)噸,比2014年上漲2.1%,某企業(yè)加工并銷售葵花籽,假設(shè)銷售量與加工量相等,在圖中,線段AB、折線CDB分別表示葵花籽每千克的加工成本y1(元)、銷售價(jià)y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系;

(1)請(qǐng)你解釋圖中點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;

(2)求線段AB所表示的y1x之間的函數(shù)解析式;

(3)當(dāng)0x90時(shí),求該葵花籽的產(chǎn)量為多少時(shí),該企業(yè)獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于點(diǎn)E,交BD于點(diǎn)H,EN∥DCBD于點(diǎn)N.下列結(jié)論:

①BH=DH;②CH=(+1)EH;③其中正確的是( 。

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了深化改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“科學(xué)實(shí)驗(yàn)”、“音樂(lè)舞蹈”和“手工編織”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán).為此,隨機(jī)調(diào)查了本校各年級(jí)部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):

某校被調(diào)查學(xué)生選擇社團(tuán)意向統(tǒng)計(jì)表

選擇意向

所占百分比

文學(xué)鑒賞

a

科學(xué)實(shí)驗(yàn)

35%

音樂(lè)舞蹈

b

手工編織

10%

其他

c

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:

(1)求本次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有1200名學(xué)生,試估計(jì)全校選擇“科學(xué)實(shí)驗(yàn)”社團(tuán)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,D為弦BC的中心,連接OD并延長(zhǎng)交過(guò)點(diǎn)C的切線于點(diǎn)P,連接AC.求證:△CPD∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

如圖,把沿直線平行移動(dòng)線段的長(zhǎng)度,可以變到的位置;

如圖,以為軸,把翻折,可以變到的位置;

如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問(wèn)題:

在圖中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;

指圖中線段之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣x+4與反比例函數(shù)y=的圖象相交于點(diǎn)A(﹣2,a),并且與x軸相交于點(diǎn)B.

(1)求a的值;

(2)求反比例函數(shù)的表達(dá)式;

(3)求AOB的面積;

(4)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案