從邊長相等的正三角形、正四邊形、正五邊形、正六邊形、正八邊形中任選兩種不同的 正多邊形,能夠進行平面鑲嵌的概率是 ( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
在6張完全相同的卡片上分別畫上線段、等邊三角形、平行四邊形、直角梯形、雙曲線、圓,在看不見圖形的情況下隨機摸出1張,這張卡片上的圖形既是中心對稱圖形又是軸對稱圖形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(小)值。
對于任意正實數(shù)a、b,可作如下變形a+b==-+=+ ,
又∵≥0, ∴+ ≥0+,即≥.
(1)根據(jù)上述內(nèi)容,回答下列問題:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,當且僅當a、b滿足 時,a+b有最小值.
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據(jù)圖形驗證≥成立,并指出等號成立時的條件.
(3)探索應用:如圖2,已知A為反比例函數(shù)的圖像上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連結(jié)DF、EF,求四邊形ADFE面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖所示,已知二次函數(shù)與坐標軸分別交于A、D、B三點,頂點為C。
(1)求tan∠BAC
(2)在y軸上是否存在一點P,使得△DOP與△ABC相似,如果存在,求出點P的坐標,如果不存在,說明理由。
(3)Q是拋物線上一動點,使得以A、B、C、Q為端點的四邊形是一個梯形,請直接寫出滿足條件的Q點的坐標。(不要求寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
右圖是蜘蛛結(jié)網(wǎng)過程示意圖,一只蜘蛛先以為起點結(jié)六條線后,再從線上某點開始按逆時針方向依次在…上結(jié)網(wǎng),若將各線上的結(jié)點依次記為1、2、3、4、5、6、7、8、…,那么第200個結(jié)點在( )
A.線上 B.線上 C.線上 D.線上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com