【題目】已知菱形ABCD中,AB=5,∠B=60°,⊙A的半徑為2,⊙B的半徑為3,點E、F分別為⊙A、⊙B上的動點,點P為DC邊上的動點,則PE+PF的最小值為_____.
【答案】5.
【解析】
作點B關(guān)于直線CD的對稱點B',連接AC、CB',延長DC交BB'于H.連接AB'交直線DC于點P.證明點P與點C重合,得到PE+PF的最小值=AC+BC-AB=AB即可.
作點B關(guān)于直線CD的對稱點B',連接AC、CB',延長DC交BB'于H.連接AB'交直線DC于點P.
∵AB=BC,∠CBA=60°,
∴△ABC是等邊三角形,
∴∠ACB=60°.
∵菱形ABCD中,∠ABC=60°,
∴∠BCD=120°,
∴∠BCH=∠B'CH=60°,
∴∠A'PB=∠BCH+∠B'CH+∠ACB=180°,
∴A、C、B'三點共線,
∴點P與點C重合.
∴PE+PF的最小值=AC+BC-AE-BF=AC+BC-AB=AB=5.
故答案為:5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年5月份,某校九年級學(xué)生參加了中考體育考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表和扇形統(tǒng)計圖,根據(jù)圖表中的信息解答下列問題:
分組 | 分?jǐn)?shù)段(分) | 頻數(shù) |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班學(xué)生人數(shù)和m的值;
(2)直接寫出該班學(xué)生的中考體育成績的中位數(shù)落在哪個分?jǐn)?shù)段;
(3)該班中考體育成績滿分共有3人,其中男生1人,女生2人.現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】外線投籃是籃球隊常規(guī)訓(xùn)練的重要項目之一,下列圖表中數(shù)據(jù)是甲、乙、丙三人每人十次投籃測試的成績.測試規(guī)則為連續(xù)投籃十個球為一次,投進籃筐一個球記為1分.
運動員甲測試成績表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫出運動員乙測試成績的眾數(shù)和中位數(shù);
(2)在他們?nèi)酥羞x擇一位投籃成績優(yōu)秀且較為穩(wěn)定的選手作為中鋒,你認為選誰更合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,把的各邊進行下列變換:①各邊的長度分別擴大為原來的3倍;②各邊的長度分別縮小為原來的;③各邊的長度分別增加2;④各邊的長度分別平方.其中得到的三角形與相似的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點G在直徑DF的延長線上,∠D=∠G=30°.
(1)判斷CG與圓O的關(guān)系,并說明理由;
(2)若CD=6,求線段GF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線與x軸交于B、C兩點,與y軸交于點A(0,3),且OA=OC.
(1)求拋物線的解析式;
(2)點P是直線AC上方拋物線上的一點,過點P作PD⊥x軸于點D.若△PDC與△AOB相似,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超速行駛被稱為“馬路第一殺手”為了讓駕駛員自覺遵守交通規(guī)則,湖潯大道公路檢測中心在一事故多發(fā)地段安裝了一個測速儀器,如圖所示,已知檢測點設(shè)在距離公路10米的A處,測得一輛汽車從B處行駛到C處所用時間為1.35秒.已知∠B=45°,∠C=30°.
(1)求B,C之間的距離(結(jié)果保留根號);
(2)如果此地限速為70km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù);≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=﹣ax2+c(a≠c)的圖象大致為( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,經(jīng)市場預(yù)測,銷售單價為40元時,可售出600個;而銷售單價每漲1元,銷售量將減少10個.設(shè)每個銷售單價為元.
(1)寫出銷售量(件)和獲得利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系;
(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com