【題目】如圖:順次連接矩形A1B1C1D1四邊的中點得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnnDn.若矩形A1B1C1D1的面積為8,那么四邊形AnBnnDn的面積為_____

【答案】24-n

【解析】

根據(jù)矩形A1B1C1D1面積、四邊形A2B2C2D2的面積、四邊形A3B3C3D3的面積,即可發(fā)現(xiàn)新四邊形與原四邊形的面積的一半,找到規(guī)律即可解題.

解:順次連接矩形A1B1C1D1四邊的中點得到四邊形A2B2C2D2,則四邊形A2B2C2D2的面積為矩形A1B1C1D1面積的一半,

順次連接四邊形A2B2C2D2四邊的中點得四邊形A3B3C3D3,則四邊形A3B3C3D3的面積為四邊形A2B2C2D2面積的一半,

故新四邊形與原四邊形的面積的一半,

則四邊形AnBnCnDn面積為矩形A1B1C1D1面積的,

∴四邊形AnBnCnDn面積=×8=24-n.

故答案為:24-n.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC放在以O為原點的平面直角坐標系中,A(30),C(02),點EAB的中點,點FBC邊上,且CF1,若Mx軸上的動點,Ny軸上的動點,則四邊形MNFE的周長最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】婷婷在發(fā)現(xiàn)一個門環(huán)的示意圖如圖所示.圖中以正六邊形ABCDEF的對角線AC的中點O為圓心,OB為半徑作O,AQO于點P,并交DE于點Q,若AQ12cm,則該圓的半徑為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側面示意圖.已知自動扶梯AB的坡度為124,AB的長度是13米,MN是二樓樓頂,MN∥PQ,CMN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈07tan42°≈09

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年永州市初中體育水平測試進行改革,增加了自選項目,學生可以從籃球運球、足球運球、排球向上墊球三項中必須選一項,另外從一分鐘跳繩、仰臥起坐(女)或引體向上(男)、原地正面擲實心球、立定跳遠中必須選一項.現(xiàn)對永州市某校的選考項目情況進行調(diào)查,對調(diào)查結果進行了分析統(tǒng)計并制作了兩幅統(tǒng)計圖:

1)補全條形統(tǒng)計圖;

2)求抽查的這些男生的體育測試平均分;

3)若該校準備從這次體育測試成績好的生中選出10名參加全市運動會.現(xiàn)在有19名學生報名,小明是這19名同學之一,小明在知道自己這次成績后還需知道這19名學生成績的( ),就能知道自己能不能參加市運動會.

A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,直徑AB8,∠A30°,AC8,AC與⊙O交于點D

1)求證:直線BD是線段AC的垂直平分線;

2)若過點DDEBC,垂足為E,求證:DE是⊙O的切線;

3)若點FAC的三等分點,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商城銷售A,B兩種自行車.A型自行車售價為2 100/輛,B型自行車售價為1 750/輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80 000元購進A型自行車的數(shù)量與用64 000元購進B型自行車的數(shù)量相等.

(1)求每輛A,B兩種自行車的進價分別是多少?

(2)現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13 000元,求獲利最大的方案以及最大利潤.

查看答案和解析>>

同步練習冊答案