(2013年四川資陽(yáng)11分)在一個(gè)邊長(zhǎng)為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交正方形的邊于點(diǎn)F,過(guò)點(diǎn)M作MN⊥DF于H,交AD于N.
(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;
(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),點(diǎn)E同時(shí)從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0);
①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時(shí),則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說(shuō)明理由.
②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請(qǐng)寫(xiě)出a,t之間的關(guān)系;若不能,請(qǐng)說(shuō)明理由.
解:(1)證明:∵∠DNC+∠ADF=90°,∠DNC+∠DCN=90°,∴∠ADF=∠DCN。
在△ADF與△DNC中,∵,
∴△ADF≌△DNC(ASA)!郉F=MN。
(2)①該命題是真命題。理由如下:
當(dāng)點(diǎn)F是邊AB中點(diǎn)時(shí),則AF=AB=CD。
∵AB∥CD,∴△AFE∽△CDE,
∴。∴AE=EC,則AE=AC=a。∴。
∴CM=1•t=a=CD。
∴點(diǎn)M為邊CD的三等分點(diǎn)
②能。理由如下:
易證AFE∽△CDE,∴,即,得。
易證△MND∽△DFA,∴,即,得ND=t。
∴ND=CM=t,AN=DM=a﹣t。
若△MNF為等腰三角形,則可能有三種情形:
(I)若FN=MN,則由AN=DM知△FAN≌△NDM,
∴AF=DM,即=t,得t=0,不合題意!啻朔N情形不存在。
(II)若FN=FM,由MN⊥DF知,HN=HM,∴DN=DM=MC,
∴t=a,此時(shí)點(diǎn)F與點(diǎn)B重合。
(III)若FM=MN,顯然此時(shí)點(diǎn)F在BC邊上,如圖所示,
易得△MFC≌△NMD,∴FC=DM=a﹣t。
又由△NDM∽△DCF,∴,即
∴。
∴=a﹣t。
∴t=a,此時(shí)點(diǎn)F與點(diǎn)C重合。
綜上所述,當(dāng)t=a或t=a時(shí),△MNF能夠成為等腰三角形。
【解析】(1)證明△ADF≌△DNC,即可得到DF=MN。
(2)①首先證明△AFE∽△CDE,利用比例式求出時(shí)間t=a,進(jìn)而得到CM=a=CD,所以該命題為真命題。
②若△MNF為等腰三角形,則可能有三種情形,需要分類(lèi)討論。
考點(diǎn):四邊形綜合題,雙動(dòng)點(diǎn)問(wèn)題,命題和證明,正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),等腰三角形的判定,分類(lèi)思想的應(yīng)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題
(2013年四川資陽(yáng)9分)釣魚(yú)島歷來(lái)是中國(guó)領(lǐng)土,以它為圓心在周?chē)?2海里范圍內(nèi)均屬于禁區(qū),不允許它國(guó)船只進(jìn)入,如圖,今有一中國(guó)海監(jiān)船在位于釣魚(yú)島A正南方距島60海里的B處海域巡邏,值班人員發(fā)現(xiàn)在釣魚(yú)島的正西方向52海里的C處有一艘日本漁船,正以9節(jié)的速度沿正東方向駛向釣魚(yú)島,中方立即向日本漁船發(fā)出警告,并沿北偏西30°的方向以12節(jié)的速度前往攔截,期間多次發(fā)出警告,2小時(shí)候海監(jiān)船到達(dá)D處,與此同時(shí)日本漁船到達(dá)E處,此時(shí)海監(jiān)船再次發(fā)出嚴(yán)重警告.
(1)當(dāng)日本漁船受到嚴(yán)重警告信號(hào)后,必須沿北偏東轉(zhuǎn)向多少度航行,才能恰好避免進(jìn)入釣魚(yú)島12海里禁區(qū)?
(2)當(dāng)日本漁船不聽(tīng)嚴(yán)重警告信號(hào),仍按原速度,原方向繼續(xù)前進(jìn),那么海監(jiān)船必須盡快到達(dá)距島12海里,且位于線段AC上的F處強(qiáng)制攔截漁船,問(wèn)海監(jiān)船能否比日本漁船先到達(dá)F處?(注:①中國(guó)海監(jiān)船的最大航速為18節(jié),1節(jié)=1海里/小時(shí);②參考數(shù)據(jù):sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題
(2013年四川資陽(yáng)9分)如圖,已知直線l分別與x軸、y軸交于A,B兩點(diǎn),與雙曲線(a≠0,x>0)分別交于D、E兩點(diǎn).
(1)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個(gè)單位,當(dāng)m為何值時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn)?
(2)假設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)D為線段AB的n等分點(diǎn),請(qǐng)直接寫(xiě)出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題
(2013年四川資陽(yáng)8分)在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.
(1)如圖1,若點(diǎn)D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點(diǎn)D與圓心O不重合,∠BAC=25°,請(qǐng)直接寫(xiě)出∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(四川資陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題
(2013年四川資陽(yáng)8分)在關(guān)于x,y的二元一次方程組中.
(1)若a=3.求方程組的解;
(2)若S=a(3x+y),當(dāng)a為何值時(shí),S有最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com