如圖1,以矩形ABCD的頂點A為原點,AD所在的直線為x軸,AB所在的直線為y軸,建立平面直角坐標(biāo)系.點D的坐標(biāo)為(8,0),點B的坐標(biāo)為(0,6),點F在對角線AC上運動(點F不與點A、C重合),過點F分別作x軸、y軸的垂線,垂足為G、E.設(shè)四邊形BCFE的面積為S1,四邊形CDGF的面積為S2,△AFG的面積為S3
(1)試判斷S1,S2的關(guān)系,并加以證明;
(2)當(dāng)S3:S2=1:3時,求點F的坐標(biāo);
(3)如圖2,在(2)的條件下,把△AEF沿對角線AC所在直線平移,得到△A′E′F′,且A′,F(xiàn)′兩點始終在直線AC上,是否存在這樣的點E′,使點E′到x軸的距離與到y(tǒng)軸的距離比是5:4?若存在,請求出點E′的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)
分析:(1)兩者應(yīng)該相等,由于四邊形ADCB是矩形,那么對角線平分矩形的面積,同理OF也平分矩形AEFG的面積,由此就不難得出S1=S2了;
(2)S3:S2=S3:S1=1:3,也就能得出S△AGF:S△ADC=1:4,根據(jù)相似三角形的面積比等于相似比的平方,可得出OF:OC=1:2,即F為OC中點.由此可根據(jù)C、D的坐標(biāo)直接求出F的坐標(biāo);
(3)由于A′F′始終在OC上,因此EE′所在的直線必平行于OC,可先求出直線EE′的解析式,然后根據(jù)E′橫、縱坐標(biāo)的比例關(guān)系來設(shè)出E′的坐標(biāo),代入直線EE′中即可求出E′的坐標(biāo).
解答:解:(1)S1=S2
證明:∵FE⊥y軸,F(xiàn)G⊥x軸,∠BAD=90°,
∴四邊形AEFG是矩形.
∴AE=GF,EF=AG.
∴S△AEF=S△AFG
同理S△ABC=S△ACD
∴S△ABC-S△AEF=S△ACD-S△AFG
即S1=S2

(2)∵FG∥CD,
∴△AFG∽△ACD.
S3
S3+S2
=(
FG
CD
)2=(
AG
AD
)2=
1
1+3
=
1
4

∴FG=
1
2
CD,AG=
1
2
AD.
∵CD=BA=6,AD=BC=8,
∴FG=3,AG=4.
∴F(4,3);

(3)∵△A′E′F′是由△AEF沿直線AC平移得到的,且A′、F′兩點始終在直線AC上,
∴點E′在過點E(0,3)且與直線AC平行的直線l上移動.
∵直線AC的解析式是y=
3
4
x,
∴直線L的解析式是y=
3
4
x+3.
設(shè)點E′為(x,y),
∵點E′到x軸的距離與到y(tǒng)軸的距離比是5:4,
∴|y|:|x|=5:4.
①當(dāng)x、y為同號時,得
y=
5
4
x
y=
3
4
x+3
解得
x=6
y=7.5
,
∴E′(6,
15
2
);
②當(dāng)x、y為異號時,得
y=-
5
4
x
y=
3
4
x+3
解得
x=-
3
2
y=
15
8
,
∴E′(-
3
2
15
8
).
∴存在滿足條件的E′坐標(biāo)分別是(6,
15
2
)、(-
3
2
15
8
).
精英家教網(wǎng)
點評:本題主要考查了矩形的性質(zhì)、圖形面積的求法、一次函數(shù)的應(yīng)用等知識點.要注意的是(3)題在不確定E′橫、縱坐標(biāo)的符號時,要分類討論,不要漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在平面直角坐標(biāo)系中,已知△ABC是等邊三角形,點B的坐標(biāo)為(12,0),動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設(shè)運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在x軸上.
(1)當(dāng)t為何值時,點M與點O重合;
(2)求點P坐標(biāo)和等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以O(shè)D為邊在△AOB內(nèi)部作如圖②所示的矩形ODEF,點E在線段AB上.設(shè)等邊△PMN和矩形ODEF重疊部分的面積為S,請求出當(dāng)0≤t≤2秒時S與t的函數(shù)關(guān)系式,并求出S的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)除了正方形外,寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱:
矩形、直角梯形
;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB,并寫出點M的坐標(biāo);
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點,P是線段DE上任意一點.求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,在等邊△ABC中,點D是BC邊的中點,以AD為邊作等邊△ADE.
(1)求∠CAE的度數(shù);
(2)取AB邊的中點F,連接CF、CE,試證明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當(dāng)x為何值時,△MAN為等腰直角三角形?
(2)當(dāng)x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認(rèn)為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)二模)(1)如圖1,以AC為斜邊的Rt△ABC和矩形HEFG擺放在直線l上(點B、C、E、F在直線l上),已知BC=EF=1,AB=HE=2.△ABC沿著直線l向右平移,設(shè)CE=x,△ABC與矩形HEFG重疊部分的面積為y(y≠0).當(dāng)x=
35
時,求出y的值;
(2)在(1)的條件下,如圖2,將Rt△ABC繞AC的中點旋轉(zhuǎn)180°后與Rt△ABC形成一個新的矩形ABCD,當(dāng)點C在點E的左側(cè),且x=2時,將矩形ABCD繞著點C順時針旋轉(zhuǎn)α角,將矩形HEFG繞著點E逆時針旋轉(zhuǎn)相同的角度.若旋轉(zhuǎn)到頂點D、H重合時,連接AG,求點D到AG的距離;
(3)在(2)的條件下,如圖3,當(dāng)α=45°時,設(shè)AD與GH交于點M,CD與HE交于點N,求證:四邊形MHND為正方形.

查看答案和解析>>

同步練習(xí)冊答案