如圖,∠ACB=90°,AC=BC,D為△ABC外一點(diǎn),且AD=BD,DE⊥AC交CA的延長線于E點(diǎn).求證:DE=AE+BC.
分析:首先連接CD,由AC=BC,AD=BD,可得CD是AB的垂直平分線,又由∠ACB=90°,易得△CDE是等腰直角三角形,繼而證得結(jié)論.
解答:證明:連接CD,
∵AC=BC,AD=BD,
∴C在AB的垂直平分線上,D在AB的垂直平分線上,
∴CD是AB的垂直平分線,
∵∠ACB=90°,
∴∠ACD=
1
2
∠ACB=45°,
∵DE⊥AC,
∴∠CDE=∠ACD=45°,
∴CE=DE,
∴DE=AE+AC=AE+BC.
點(diǎn)評:此題考查了線段垂直平分線的性質(zhì)以及等腰直角三角形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,則MN的長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,則DE的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ACB=90°,CD⊥AB,垂足為D,下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ACB=90°,AC=BC,D為AB上一點(diǎn),AE⊥CD,BF⊥CD,交CD延長線于F點(diǎn).求證:BF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ACB=90°,AC=AD,DE⊥AB,求證:△CDE是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案