【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,點(diǎn)O△ABC的中心,∠FOG=120°,繞點(diǎn)O旋轉(zhuǎn)∠FOG,分別交線段AB,BCD,E兩點(diǎn),連接DE,給出下列三個(gè)結(jié)論①OD=OE; SODE=SBDE;③四邊形ODBE的面積始終等于.述結(jié)論中正確的個(gè)數(shù)是( )

A. 3 B. 2 C. 1 D. 0

【答案】B

【解析】

先連接OA,OB,OC,然后根據(jù)三角形的中心的性質(zhì)和三角形全等判斷三個(gè)結(jié)論的正確性.

連接OA,OB,OC,

因?yàn)辄c(diǎn)OABC的中心,

所以∠AOB=BOC=120°,OA=OB=OC

所以∠BOC=FOG=120°,ABO=BCO=30°,

所以∠BOD=COE,

所以BOD≌△COE,

所以OD=OE,結(jié)論①正確;

如當(dāng)EBC的中點(diǎn)時(shí),SODE<SBDE,所以②錯(cuò)誤;因?yàn)?/span>BOD≌△COE,所以SBOD=SCOE,所以S四邊形ODBE=SBOC=SABC=,結(jié)論③正確.

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)0是坐標(biāo)原點(diǎn).邊長(zhǎng)為6的正方形OABC的頂點(diǎn)A,C分別在x軸和y軸的正半軸上,點(diǎn)E是對(duì)角線AC上一點(diǎn),連接OE、BE,BE的延長(zhǎng)線交OA于點(diǎn)P,若△OCE的面積為12.

(1)求點(diǎn)E的坐標(biāo):
(2)求△OPE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(﹣1,3)和點(diǎn)(2,﹣3),

(1)求一次函數(shù)的解析式;

(2)判斷點(diǎn)C(﹣2,5)是否在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【新知理解】

如圖①,點(diǎn)C在線段AB上,圖中共有三條線段AB、ACBC,若其中有一條線段的長(zhǎng)度是另外一條線段長(zhǎng)度的2倍,則稱(chēng)點(diǎn)C是線段AB巧點(diǎn)”.

線段的中點(diǎn)__________這條線段的巧點(diǎn);(填不是.

AB = 12cm,點(diǎn)C是線段AB的巧點(diǎn),則AC=___________cm

【解決問(wèn)題】

3如圖②,已知AB=12cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向點(diǎn)B勻速移動(dòng):點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA向點(diǎn)A勻速移動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止,設(shè)移動(dòng)的時(shí)間為ts.當(dāng)t為何值時(shí),AP、Q三點(diǎn)中其中一點(diǎn)恰好是另外兩點(diǎn)為端點(diǎn)的線段的巧點(diǎn)?說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(知識(shí)情境)通常情況下,用兩種不同的方法計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)恒等式.

(1)如圖1,在邊長(zhǎng)為的正方形中挖掉一個(gè)邊長(zhǎng)為的小正方形.把余下的部分剪拼成一個(gè)長(zhǎng)方形(如圖2).通過(guò)計(jì)算圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,則這個(gè)等式是______________;

(拓展探究)類(lèi)似地,用兩種不同的方法計(jì)算同一個(gè)幾何體的體積,也可以得到一個(gè)恒等式.

如圖3是邊長(zhǎng)為的正方體,被如圖所示的分割線分成塊.

圖3

(2)用不同的方法計(jì)算這個(gè)正方體的體積,就可以得到一個(gè)恒等式,這個(gè)恒等式可以為:

_________________________________________________________________;

(3)已知,,利用上面的恒等式求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,平分,交邊于點(diǎn)

1)如圖1,過(guò)點(diǎn),若已知,求的度數(shù);

1

2)如圖2,過(guò)點(diǎn),若恰好又平分,求的度數(shù);

2

3)如圖3,平分的外角,交的延長(zhǎng)線于點(diǎn),作,設(shè),試求的值.(用含有的代數(shù)式表示)

3

4)如圖4,在圖3的基礎(chǔ)上分別作的角平分線,交于點(diǎn),作,設(shè),試直接寫(xiě)出的值.(用含有的代數(shù)式表示)

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)OOD平分∠BOF,OECDO,若∠EOFα,下列說(shuō)法①∠AOCα90°;②∠EOB180°α;③∠AOF360°,其中正確的是(

A. ①②B. ①③C. ②③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.將△ABC向右平移6個(gè)單位長(zhǎng)度,再向下平移6個(gè)單位長(zhǎng)度得到△A1B1C1(圖中每個(gè)小方格邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)

1)在圖中畫(huà)出平移后的△A1B1C1;

2)直接寫(xiě)出△A1B1C1各頂點(diǎn)的坐標(biāo)

3)求出△A1B1C1的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EF分別在AB,AD上,且BEAF,連接CE,BF相交于點(diǎn)G,則下列結(jié)論不正確的是( )

A. BFCE B. ∠AFB∠ECD C. BF⊥CE D. ∠AFB∠BEC90°

查看答案和解析>>

同步練習(xí)冊(cè)答案