【題目】某汽車(chē)專(zhuān)買(mǎi)店銷(xiāo)售A,B兩種型號(hào)的新能源汽車(chē),上周售出1輛A型車(chē)和3輛B型車(chē),銷(xiāo)售額為96萬(wàn)元;本周已售出2輛A型車(chē)和1輛B型車(chē),銷(xiāo)售額為62萬(wàn)元.
(1)求每輛A型車(chē)和B型車(chē)的件價(jià)各為多少萬(wàn)元;
每輛A型車(chē)和B型車(chē)的售價(jià)分別是x萬(wàn)元,y萬(wàn)元.
根據(jù)題意,列方程組
解這個(gè)方程組,得x= ,y=
答: .
(2)有一家公司擬向該店購(gòu)買(mǎi)A,B兩種型號(hào)的新能源汽車(chē)共6輛,購(gòu)車(chē)費(fèi)不超過(guò)130萬(wàn)元,求這次購(gòu)進(jìn)B型車(chē)最多幾輛?
【答案】(1)每輛A型車(chē)和B型車(chē)的售價(jià)分別是18萬(wàn)元、26萬(wàn)元;(2)共有兩種方案:方案一:購(gòu)買(mǎi)2輛A型車(chē)和4輛B型車(chē);
方案二:購(gòu)買(mǎi)3輛A型車(chē)和3輛B型車(chē).
【解析】
(1)每輛A型車(chē)和B型車(chē)的售價(jià)分別是x萬(wàn)元、y萬(wàn)元.則等量關(guān)系為:1輛A型車(chē)和3輛B型車(chē),銷(xiāo)售額為96萬(wàn)元,2輛A型車(chē)和1輛B型車(chē),銷(xiāo)售額為62萬(wàn)元;
(2)設(shè)購(gòu)買(mǎi)A型車(chē)a輛,則購(gòu)買(mǎi)B型車(chē)(6-a)輛,則根據(jù)“購(gòu)買(mǎi)A,B兩種型號(hào)的新能源汽車(chē)共6輛,購(gòu)車(chē)費(fèi)不少于130萬(wàn)元,且不超過(guò)140萬(wàn)元”得到不等式組.解答即可.
解:(1)每輛A型車(chē)和B型車(chē)的售價(jià)分別是x萬(wàn)元、y萬(wàn)元.
則,
解得,
故答案為:,18,26,每輛A型車(chē)的售價(jià)為18萬(wàn)元,每輛B型車(chē)的售價(jià)為26萬(wàn)元;
(2)設(shè)購(gòu)買(mǎi)A型車(chē)a輛,則購(gòu)買(mǎi)B型車(chē)(6-a)輛,
則依題意得
∵a是正整數(shù),
∴a=2或a=3.
∴共有兩種方案:
方案一:購(gòu)買(mǎi)2輛A型車(chē)和4輛B型車(chē);
方案二:購(gòu)買(mǎi)3輛A型車(chē)和3輛B型車(chē).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,OE平分,點(diǎn)A、B、C分別是射線(xiàn)OM、OE、ON上的動(dòng)點(diǎn)、B、C不與點(diǎn)O重合,連接AC交射線(xiàn)OE于點(diǎn)設(shè).
如圖1,若,則
的度數(shù)是______;
當(dāng)時(shí),______;當(dāng)時(shí),______.
如圖2,若,則是否存在這樣的x的值,使得中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)試判斷四邊形AECF的形狀;
(2)若AE=BE,∠BAC=90°,求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E,F(xiàn)分別是邊BC,CD邊上的動(dòng)點(diǎn),且AE=AF,設(shè)△AEF的面積為y,EC的長(zhǎng)為x.
(1)求y與x之間的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍.
(2)當(dāng)x取何值時(shí),△AEF的面積最大,最大面積是多少?
(3)在直角坐標(biāo)系中畫(huà)出y關(guān)于x的函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1個(gè)單位長(zhǎng)度,向右平移5個(gè)單位長(zhǎng)度,可以得到三角形A′B′C′.
(Ⅰ)在圖中畫(huà)出△A′B′C′;
(Ⅱ)直接寫(xiě)出點(diǎn)A′、B′、C′的坐標(biāo);
(Ⅲ)寫(xiě)出A′C′與AC之間的位置關(guān)系和大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)C在∠AOB的一邊OA上,過(guò)點(diǎn)C的直線(xiàn)DE∥O B.做∠ACD的平分線(xiàn)CF,過(guò)點(diǎn)C畫(huà)CF的垂線(xiàn)CG,如圖所示.
(Ⅰ)若∠AOB=40°,求∠ACD及∠ECF的度數(shù);
(Ⅱ)求證:CG平分∠OCD;
(Ⅲ)延長(zhǎng)FC交OB于點(diǎn)H,用直尺和三角板過(guò)點(diǎn)O作OR⊥FH,垂足為R,過(guò)點(diǎn)O
作FH的平行線(xiàn)交ED于點(diǎn)Q.先補(bǔ)全圖形,再證明∠COR=∠GCO,∠CQO=∠CHO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課中,同學(xué)們準(zhǔn)備了一些等腰直角三角形紙片,從每張紙片中剪出一個(gè)扇形制作圓錐玩具模型.如圖,已知△ABC是腰長(zhǎng)為4的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個(gè)面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)請(qǐng)求出所制作圓錐底面的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于反比例函數(shù)y= 的圖象,下列說(shuō)法正確的是( )
A.圖象經(jīng)過(guò)點(diǎn)(1,1)
B.兩個(gè)分支分布在第二、四象限
C.兩個(gè)分支關(guān)于x軸成軸對(duì)稱(chēng)
D.當(dāng)x<0時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,直線(xiàn)EF與AB、CD分別相交于點(diǎn)E、F.
(1)如圖1,若∠1=120°,∠2=60°,求證AB∥CD;
(2)在(1)的情況下,若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系;
①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=∠PEB+∠PFD;
請(qǐng)閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)
解:如圖2,過(guò)點(diǎn)P作MN∥AB,
則∠EPM=∠PEB_____.
∵AB∥CD(已知),MN∥AB(作圖)
∴MN∥CD_____.
∴∠MPF=∠PFD
∴∠_____+∠_____=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD
②當(dāng)點(diǎn)P在圖3的位置時(shí),∠EPF、∠PEB、∠PFD三個(gè)角之間有何關(guān)系并證明.
③當(dāng)點(diǎn)P在圖4的位置時(shí),請(qǐng)直接寫(xiě)出∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com