【題目】如圖,某沿海開放城市A接到臺風警報,在該市正南方向100km的B處有一臺風中心,沿BC方向以20km/h的速度向D移動,已知城市A到BC的距離AD=60km,那么臺風中心經(jīng)過多長時間從B點移到D點?如果在距臺風中心30km的圓形區(qū)域內(nèi)都將有受到臺風的破壞的危險,正在D點休閑的游人在接到臺風警報后的幾小時內(nèi)撤離才可脫離危險?
【答案】2.5小時內(nèi)撤離才可脫離危險
【解析】
試題首先根據(jù)勾股定理計算BD的長,再根據(jù)時間=路程÷速度進行計算;再根據(jù)在30千米范圍內(nèi)都要受到影響,先求出從點B到受影響的距離與結(jié)束影響的距離,再根據(jù)時間=路程÷速度計算,然后求出時間段即可.
解:∵AB=100km,AD=60km,
∴在Rt△ABD中,根據(jù)勾股定理,得BD==80km,
則臺風中心經(jīng)過80÷20=4小時從B移動到D點;
如圖,∵距臺風中心30km的圓形區(qū)域內(nèi)都會受到不同程度的影響,
∴人們要在臺風中心到達E點之前撤離,
∵BE=BD﹣DE=80﹣30=50km,
∴游人在=2.5小時內(nèi)撤離才可脫離危險.
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的方程(m-1)x2+(m+1)x+3m-1=0,當m_________時,是一元一次方程;當m_________時,是一元二次方程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,給出了下列三個論斷:①對角線AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三個論斷中,若以其中兩個論斷作為條件,另外一個論斷作為結(jié)論,則可以得出______個正確的命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E正方形ABCD外一點,點F是線段AE上一點,△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.
(1)求二次函數(shù)解析式及頂點坐標;
(2)點P為線段BD上一點,若S△BCP= ,求點P的坐標;
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D點,M,N是AC,BC上的動點,且∠MDN=90°,下列結(jié)論:①AM=CN;②四邊形MDNC的面積為定值;③AM2+BN2=MN2;④NM平分∠CND.其中正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己知△ABC,任取一點O,連AO,BO,CO,并取它們的中點D,E,F(xiàn),得△DEF,則下列說法正確的個數(shù)是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別是A(1,3),B(﹣2,﹣2),C(2,﹣1).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)寫出點A1,B1,C1的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將三角形ABC沿射線BA方向平移到三角形A'B'C'的位置,連接AC'.
(1)AA'與CC'的位置關(guān)系為 ;
(2)求證:∠A'+∠CAC'+∠AC'C=180°;
(3)設(shè)∠ACB=y,試探索∠CAC'與x,y之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com