【題目】如圖,在平面直角坐標系中,A(﹣2,2),B(﹣3,﹣2)
(1)若點C與點A關于原點O對稱,則點C的坐標為 ;
(2)將點A向右平移5個單位得到點D,則點D的坐標為 ;
(3)由點A,B,C,D組成的四邊形ABCD內(nèi)(不包括邊界)任取一個橫、縱坐標均為整數(shù)的點,求所取的點橫、縱坐標之和恰好為零的概率.
【答案】(1)(2,﹣2)。
(2)(3,2)。
(3)由圖可知:A(﹣2,2),B(﹣3,﹣2),C(2,﹣2),D(3,2),
【解析】
∵在平行四邊形ABCD內(nèi)橫、縱坐標均為整數(shù)的點有15個,其中橫、縱坐標和為零的點有3個,即(﹣1,1),(0,0),(1,﹣1),
∴所取的點橫、縱坐標之和恰好為零的概率。
(1)根據(jù)關于原點的對稱點,橫縱坐標都互為相反數(shù)求解即可。
(2)把點A的橫坐標加5,縱坐標不變即可得到對應點D的坐標。
(3)先找出在平行四邊形內(nèi)的所有整數(shù)點和橫、縱坐標之和恰好為零的點,再根據(jù)概率公式求解即可。
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標中,已知點O(0,0),A(0,2),B(1,0),點P是反比例函數(shù)y=-
圖象上的一個動點,過點P作PQ⊥x軸,垂足為Q . 若以點O、P、Q為頂點的三角形與△OAB相似,則相應的點P共有( 。.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1;
②△A2B2C2與△ABC關于原點O成中心對稱,畫出△A2B2C2 .
(2)在(1)中所得的△A1B1C1和△A2B2C2關于點M成中心對稱,請直接寫出對稱中心M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線 y=x+2 與兩坐標軸分別交于A、B 兩點,點 C 是 OB 的中點,D、E 分 別是直線 AB、y 軸上的動點,則△CDE 周長的最小值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點C為旋轉中心,將△ABC旋轉到△A′B′C的位置,其中A′、B′分別是A、B的對應點,且點B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉角等于( )
A.70°
B.80°
C.60°
D.50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)試判斷△AEF的形狀,并說明理由;
(2)填空:△ABF可以由△ADE繞旋轉中心點,按順時針方向旋轉度得到;
(3)若BC=8,則四邊形AECF的面積為 . (直接寫結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】晚上,小亮走在大街上.他發(fā)現(xiàn):當他站在大街兩邊的兩盞路燈之間,并且自己被兩邊路燈照在地上的兩個影子成一直線時,自己右邊的影子長為3米,左邊的影子長為1.5米.又知自己身高1.80米,兩盞路燈的高相同,兩盞路燈之間的距離為12米,則路燈的高為米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】主題班會課上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學們的一番熱議,達成以下四個觀點:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理競爭,合作雙贏.
要求每人選取其中一個觀點寫出自己的感悟,根據(jù)同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:
觀點 | 頻數(shù) | 頻率 |
A | a | 0.2 |
B | 12 | 0.24 |
C | 8 | b |
D | 20 | 0.4 |
(1)參加本次討論的學生共有人;
(2)表中a= , b=;
(3)將條形統(tǒng)計圖補充完整;
(4)現(xiàn)準備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com