【題目】如圖,已知△ABE△CDE都是等腰直角三角形,∠AEB∠DEC90°,連接ADACBCBD,若ADACAB,則下列結(jié)論:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數(shù)為150°,其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

【答案】D

【解析】

首先證明AECBED,得到AC=BD=AB=AD,得到△ABD是等邊三角形,③正確;根據(jù) ABE CDE都是等腰直角三角形,得到∠CAB=∠CAD30°∠CAE=∠EAD15°得到①②正確; ABC,CAD為等腰三角形,頂角都為30°,得到∠ACB=∠ABC=75°,∠ACD=∠ADC=75°,得出∠BCD的度數(shù)為150°④正確

解:∵ ABE CDE都是等腰直角三角形

AE=BE, DE=CE

∵∠AEB=∠DEC90°

∴∠AEC=∠DEB

AECBED

AC=BD

ADACAB

ADBDAB

∴② ABD是等邊三角形正確

∴∠ABD=∠BAD=∠ADB=60°

ABE CDE都是等腰直角三角形

∴∠EAB=∠ABE=45°

∴∠CAB30°,∠CAE=∠EAD15°

AE為∠CAD的角平分線

ABD為等腰三角形

∴①AE垂直平分CD正確

∴∠CAD30°

∴②AC平分∠BAD正確

ABC為等腰三角形,頂角∠BAC30°

∴∠ACB=∠ABC=75°

同理∠ACD=∠ADC=75°

∴④∠BCD的度數(shù)為150°正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形BEFG的邊BG在正方形ABCD的邊BC上,連結(jié)AG,EC.

(1)說出AGCE的大小關(guān)系;

(2)圖中是否存在通過旋轉(zhuǎn)能夠相互重合的兩個(gè)三角形?若存在,請(qǐng)?jiān)敿?xì)寫出旋轉(zhuǎn)過程;若不存在,請(qǐng)說明理由.

(3)請(qǐng)你延長AGCE于點(diǎn)M,判斷AMCE的位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;

(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天水市某中學(xué)為了解學(xué)校藝術(shù)社團(tuán)活動(dòng)的開展情況,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生,在“舞蹈、樂器、聲樂、戲曲、其它活動(dòng)”項(xiàng)目中,圍繞你最喜歡哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))進(jìn)行了問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)在這次調(diào)查中,一共抽查了   名學(xué)生.

(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖.

(3)扇形統(tǒng)計(jì)圖中喜歡“樂器”部分扇形的圓心角為   度.

(4)請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該校1200名學(xué)生中喜歡“舞蹈”項(xiàng)目的共多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形斜邊上的中線把直角三角形分成的兩個(gè)三角形的關(guān)系是( 。

A. 形狀相同 B. 周長相等 C. 面積相等 D. 全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)開展征文活動(dòng),征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個(gè)主題選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

(1)求共抽取了多少名學(xué)生的征文;

(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,選擇愛國主題所對(duì)應(yīng)的圓心角是多少;

(4)如果該校九年級(jí)共有1200名學(xué)生,請(qǐng)估計(jì)選擇以友善為主題的九年級(jí)學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來三角形的三個(gè)內(nèi)角分別相等,則稱這條線段叫做這個(gè)三角形的等角分割線

例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條等角分割線

(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD△ABC等角分割線;

(2)如圖2△ABC中,∠C=90°,∠B=30°;

畫出△ABC等角分割線,寫出畫法并說明理由;

BC=3,求出中畫出的等角分割線的長度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,點(diǎn)P在邊AB上,沿著PC折疊紙片使B點(diǎn)落在邊AD上的E點(diǎn)處,過點(diǎn)EEF∥ABPCF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)若tan∠BCP=,AB=3cm,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案