【題目】如圖,一次函數(shù)的圖像與軸分別交于點、點,函數(shù),與的圖像交于第二象限的點,且點橫坐標為.

1)求的值;

2)當時,直接寫出的取值范圍;

3)在直線上有一動點,過點軸的平行線交直線于點,當時,求點的坐標.

【答案】123)點坐標為

【解析】

1)將點橫坐標代入求得點C的縱坐標為4,再把(-3,4)代入求出b即可;

2)求出點A坐標,結合點C坐標即可判斷出當時, 的取值范圍;

3)設Pa,-),可求出Q,),即可得PQ=,再求出OC=5,根據求出a的值即可得出結論.

1)把代入

.

C-3,4

把點代入,

.

2)∵b=7

y=x+7,

y=0時,x=-7,x=-3時,y=4,

∴當時,.

3為直線上一動點,

設點坐標為.

軸,

代入,得.

坐標為,

坐標為,

解之,得.

坐標為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】周未,小麗騎自行車從家出發(fā)到野外郊游,從家出發(fā)0.5小時到達甲地,游玩一段時間后按原速前往乙地,小麗離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,行駛10分鐘時,恰好經過甲地,如圖是她們距乙地的路程ykm)與小麗離家時間xh)的函數(shù)圖象.

1)小麗騎車的速度為   km/h,H點坐標為   ;

2)求小麗游玩一段時間后前往乙地的過程中yx的函數(shù)關系;

3)小麗從家出發(fā)多少小時后被媽媽追上?此時距家的路程多遠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列二次函數(shù)中有一個函數(shù)的圖像與x軸有兩個不同的交點,這個函數(shù)是(  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,∠A=80°,∠B=40°,D,E分別是AB,AC上的點,DEBC,AED的度數(shù)為( 。

A. 40° B. 60° C. 80° D. 120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內,AB與y軸的正半軸交與點E,已知點B(﹣1,0).

(1)點A的坐標:      ,點E的坐標:      ;

(2)若二次函數(shù)y=﹣x2+bx+c過點A、E,求此二次函數(shù)的解析式;

(3)P是線段AC上的一個動點(P與點A、C不重合)連結PB、PD,設L是△PBD的周長,當L取最小值時。

:①點P的坐標

判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小穎和小紅兩位同學在學習概率時,做投擲骰子(質地均勻的正方體)試驗,他們共做了60次試驗,試驗的結果如下:

(1)計算“3點朝上的頻率和“5點朝上的頻率.

(2)小穎說:根據上述試驗,一次試驗中出現(xiàn)5點朝上的概率最大;小紅說:如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100”.小穎和小紅的說法正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學舉辦網絡安全知識答題競賽,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

初中部

a

85

b

s初中2

高中部

85

c

100

160

(1)根據圖示計算出a、b、c的值;

(2)結合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?

(3)計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在矩形ABCD中,AB=3,BC=4,連接BD.現(xiàn)將一個足夠大的直角三角板的直角頂點P放在BD所在的直線上,一條直角邊過點C,另一條直角邊與AB所在的直線交于點G.

(1)是否存在這樣的點P,使點P、C、G為頂點的三角形與GCB全等?若存在,畫出圖形,并直接在圖形下方寫出BG的長.(如果你有多種情況,請用①、②、③、…表示,每種情況用一個圖形單獨表示,如果圖形不夠用,請自己畫圖)

(2)如圖(2),當點P在BD的延長線上時,以P為圓心、PB為半徑作圓分別交BA、BC延長線于點E、F,連EF,分別過點G、C作GMEF,CNEF,M、N為垂足.試探究PM與FN的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】漢諾塔問題是指有三根桿子和套在桿子上的若干大小不等的碟片,按下列規(guī)則,把碟片從一根桿子上全部移到另一根桿子上;

1)每次只能移動1個碟片.

2)較大的碟片不能放在較小的碟片上面.

如圖所示,將1號桿子上所有碟片移到2號桿子上,3號桿可以作為過渡桿使用,稱將碟片從一根桿子移動到另一根桿子為移動一次,記將l號桿子上的個碟片移動到2號桿子上最少需要次,則

A.31B.33C.63D.65

查看答案和解析>>

同步練習冊答案