【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2﹣3=0.

(1)當m取何值時,方程有兩個不相等的實數(shù)根?

(2)設(shè)x1、x2是方程的兩根,且(x1+x22﹣(x1+x2)﹣12=0,求m的值.

【答案】(1)m>-2 (2)m=1

【解析】

(1)若一元二次方程有兩不等實數(shù)根,則根的判別式=b2-4ac>0,建立關(guān)于m的不等式,求出m的取值范圍.
(2)給出方程的兩根,根據(jù)所給方程形式,可利用一元二次方程根與系數(shù)的關(guān)系得到x1+x2=2(m+1),代入
且(x1+x22-(x1+x2)-12=0,即可解答.

解:(1)∵方程有兩個不相等的實數(shù)根,

∴△=b2﹣4ac=[﹣2(m+1)]2﹣4×1×(m2﹣3)=16+8m>0,

解得:m>﹣2;

(2)根據(jù)根與系數(shù)的關(guān)系可得:

x1+x2=2(m+1),

∵(x1+x22﹣(x1+x2)﹣12=0,

∴[2(m+1)]2﹣2(m+1)﹣12=0,

解得:m1=1或m2=﹣(舍去)

∵m>﹣2;

∴m=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一道作業(yè)題:

有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm

小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.

1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.

2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點C是以AB為直徑的⊙O上一點,直線AC與過B點的切線相交于D,點EBD的中點,直線CE交直線AB于點F.

(1)求證:CF是⊙O的切線;

(2)ED=3,EF=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹AB的高度,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

1)求A、B、C的坐標;

2)點M為線段AB上一點(點M不與點A、B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQ∥AB交拋物線于點Q,過點QQN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點Fy軸的平行線,與直線AC交于點G(點G在點F的上方).FG=DQ,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點E上的一點,∠DBC=∠BED

1)求證:BC⊙O的切線;

2)已知AD=3CD=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】位于河南省鄭州市的炎黃二帝巨型塑像,是為代表中華民族之創(chuàng)始、之和諧、之統(tǒng)一.塑像由山體CD和頭像AD兩部分組成.某數(shù)學(xué)興趣小組在塑像前50米處的B處測得山體D處的仰角為45°,頭像A處的仰角為70.5°,求頭像AD的高度.(最后結(jié)果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是  

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

同步練習(xí)冊答案