【題目】如圖,菱形ABCD的邊長為4,∠DAB=60°,EBC的中點,在對角線AC上存在一點P,使△PBE的周長最小,則△PBE的周長的最小值為(

A. +1B. C. +1D. +2

【答案】D

【解析】

連接DE,與AC的交點即為使△PBE的周長最小的點P'.

連接DE

BE的長度固定,
∴要使△PBE的周長最小只需要PB+PE的長度最小即可,
∵四邊形ABCD是菱形,
ACBD互相垂直平分,
PD=PB,
PB+PE的最小長度為DE的長,
∵菱形ABCD的邊長為4EBC的中點,∠DAB=60°,
∴∠DCB=60°,BCD是等邊三角形,
DEBC,
又∵菱形ABCD的邊長為4,
DC=4,EC=2,
∴△PBE的最小周長=DE+BE=
故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文化源遠(yuǎn)流長,文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為四大古典名著某中學(xué)為了解學(xué)生對四大名著的閱讀情況,就四大古典名著你讀完了幾部的問題在全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下尚不完整的統(tǒng)計圖.

請根據(jù)以上信息,解決下列問題

(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是____部,中位數(shù)是_____部;

(2)扇形統(tǒng)計圖中“4所在扇形的圓心角為_____度;

(3)請將條形統(tǒng)計圖補(bǔ)充完整;

(4)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從中各自隨機(jī)選擇一部來閱讀,求他們恰好選中同一名著的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y2mx2+1mx1m,下面說法錯誤的是( 。

A. 當(dāng)m1時,函數(shù)圖象的頂點坐標(biāo)是(0,﹣2

B. 當(dāng)m=﹣1時,函數(shù)圖象與x軸有兩個交點

C. 函數(shù)圖象經(jīng)過定點(10),(﹣,﹣

D. 當(dāng)m0時,函數(shù)圖象截x軸所得的線段長度小于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象與x軸相交于點AC,與y軸相交于點B,A,0),且AOB∽△BOC
1)求C點坐標(biāo)、∠ABC的度數(shù)及二次函數(shù)y=ax2+bx+3的關(guān)系式;
2)在線段AC上是否存在點Mm,0).使得以線段BM為直徑的圓與邊BC交于P點(與點B不同),且以點P、C、O為頂點的三角形是等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊,使頂點C恰好落在AB邊的C'處,點D落在點D'處,C'D'交線段AE于點G.

1)求證:BC'F∽△AGC';

2)若C'AB的中點,AB=6,BC=9,求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,BD是⊙O的直徑,ADBC交于點E,FDA的延長線上,且BF=BE

1)試判斷BF與⊙O的位置關(guān)系,并說明理由;

2)若BF=6,∠C=30°,求陰影的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山區(qū)某教學(xué)樓后面緊鄰著一個土坡,坡面BC平行于地面AD,斜坡AB的坡比為i=1:,且AB=26米,為了防止山體滑坡,保障安全,學(xué)校決定對該土坡進(jìn)行改造,經(jīng)地質(zhì)人員勘測,當(dāng)坡角不超過53°時,可確保山體不滑坡;

(1)求改造前坡頂與地面的距離BE的長;

(2)為了消除安全隱患,學(xué)校計劃將斜坡AB改造成AF(如圖所示),那么BF至少是多少米?(結(jié)果精確到1米)

【參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A是直線上一點,點B軸上一點,且AB=6,則△AOB面積的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,BC三點均在O上,O外一點F,有OACF于點E,ABCF相交于點G,有FGFBACBF

(1)求證:FBO的切線.

(2)tanF,O的半徑為,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案