【題目】為申辦2013年冬奧會,須改變某城市的交通狀況,在街道拓寬工程中,要伐掉一棵樹AB,在地面上事先劃定以B為圓心,半徑與AB等長的圓形危險區(qū).現(xiàn)在某工人站在離B點3米遠(yuǎn)的D處,從C點測得樹的頂端A點的仰角為60°,樹的底部B點的俯角為30°.問:距離B點8米元的保護(hù)物是否存在危險?
【答案】距離B點8米遠(yuǎn)的保護(hù)物不在危險區(qū)內(nèi)
【解析】
試題分析:首先根據(jù)題意分析圖形;本題涉及到兩個直角三角形,分別求解可得AB的值,比較AB與8的大小,進(jìn)而可判斷出答案.
解:作CE⊥AB于點D,
∴CE=BD=3,
在Rt△AEC中,AE=tan∠ACECE=tan60°×3=3,
在Rt△CEB中,BE=tan∠BCECE=tan30°×3=,
∴AB=AE+BE=3+=4,
∵8>4,
∴距離B點8米遠(yuǎn)的保護(hù)物不在危險區(qū)內(nèi).
答:距離B點8米遠(yuǎn)的保護(hù)物不在危險區(qū)內(nèi).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=2,ED=4,
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120度時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(m+3)x2+5x+m2-9=0有一個解是0,則m的值為( )
A. -3 B. 3 C. ±3 D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2-8x+7=0,則配方正確的是( 。
A. (x+4)2=9 B. (x﹣4)2=9 C. (x﹣8)2=16 D. (x+8)2=57
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com