【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。

A. B. 3 C. D. 5

【答案】C

【解析】

由已知,可得菱形邊長(zhǎng)為5,設(shè)出點(diǎn)D坐標(biāo),即可用勾股定理構(gòu)造方程,進(jìn)而求出k值.

過點(diǎn)DDFBCF,

由已知,BC=5,

∵四邊形ABCD是菱形

DC=5,

BE=3DE,

∴設(shè)DE=x,則BE=3x,

DF=3x,BF=x,F(xiàn)C=5-x,

RtDFC中,

DF2+FC2=DC2,

(3x)2+(5-x)2=52,

∴解得x=1,

DE=1,F(xiàn)D=3,

設(shè)OB=a,

則點(diǎn)D坐標(biāo)為(1,a+3),點(diǎn)C坐標(biāo)為(5,a),

∵點(diǎn)D、C在雙曲線上

1×(a+3)=5a,

a=

∴點(diǎn)C坐標(biāo)為(5,

k=.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,BD平分∠ABCAC于點(diǎn)D,點(diǎn)EBC延長(zhǎng)線上的一點(diǎn),且BDDE.點(diǎn)G是線段BC的中點(diǎn),連結(jié)AG,交BD于點(diǎn)F,過點(diǎn)DDHBC,垂足為H

1)求證:DCE為等腰三角形;

2)若∠CDE22.5°,DC,求GH的長(zhǎng);

3)探究線段CE,GH的數(shù)量關(guān)系并用等式表示,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,記,.

1)如圖,若平分、分別是的外角的平分線,,用含的代數(shù)式表示的度數(shù),用含的代數(shù)式表示的度數(shù),并說明理由.

2)如圖,若點(diǎn) 的三條內(nèi)角平分線的交點(diǎn),于點(diǎn) , 猜想(1)中的兩個(gè)結(jié)論是否發(fā)生變化,補(bǔ)全圖形并直接寫出你的結(jié)論.

.

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是等邊△ABC的邊上的一個(gè)做勻速運(yùn)動(dòng)的動(dòng)點(diǎn),其由點(diǎn)A開始沿AB邊運(yùn)動(dòng)到B再沿BC邊運(yùn)動(dòng)到C為止,設(shè)運(yùn)動(dòng)時(shí)間為t,△ACP的面積為S,則St的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B在直線x=3上,直線x=3x軸交于點(diǎn)C

(1)求拋物線的解析式;

(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線段AB向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿線段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P,Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).以PQ為邊作矩形PQNM,使點(diǎn)N在直線x=3上.

①當(dāng)t為何值時(shí),矩形PQNM的面積最小?并求出最小面積;

②直接寫出當(dāng)t為何值時(shí),恰好有矩形PQNM的頂點(diǎn)落在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=F=90°,∠B=C,AE=AF,給出的結(jié)論:①∠1=2;②BE=CF;③△CAN≌△BMA;CD=DN,;其中正確的結(jié)論是___________________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ACB=45°,點(diǎn)E在對(duì)角線AC上,BE=BA,BFAC于點(diǎn)F,BF的延長(zhǎng)線交AD于點(diǎn)G.點(diǎn)HBC的延長(zhǎng)線上,且CH=AG,連接EH.

(1)若BC=12,AB=13,求AF的長(zhǎng);

(2)求證:EB=EH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=4,BAC=90°,點(diǎn)D在邊AB上,BECD,AECD,垂足為F,且EF=2,點(diǎn)G在線段CF上,若∠GAF=45°,則ACG的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銳銳參加我市電視臺(tái)組織的“牡丹杯”智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān),第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題銳銳都不會(huì),不過銳銳還有兩個(gè)“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關(guān)的概率是________;

(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關(guān)的概率是________;

(3)如果銳銳每道題各用一次“求助”,請(qǐng)用樹狀圖或者列表來分析他順利通關(guān)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案