已知:如圖,直線l是一次函數(shù)y=kx+b的圖象.
求:(1)這個函數(shù)的解析式;
(2)當(dāng)x=4時,y的值.
(1)依題意,得
-2k+b=0
b=1

解得k=
1
2
,b=1,
∴y=
1
2
x+1.

(2)當(dāng)x=4時,y=
1
2
×4+1=3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直角梯形OABC的下底邊OA在x軸的負半軸上,CBOA,點B的坐標為(-
10
3
,4),OA=
3
2
CB.
(1)求直線AB的解析式;
(2)點P從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接PA,設(shè)點P的運動時間為t秒.設(shè)△PAB的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)t為何值時,以PA為底△PAB是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)y=kx+b滿足x=地時,y=-h;x=h時,y=h,則這個一次函數(shù)是( 。
A.y=2x+1B.y=-2x+1C.y=2x-1D.y=-2x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某家庭裝修房屋,由甲,乙兩個裝修公司合作完成.先由甲裝修公司單獨裝修3天,剩下的工作由甲,乙兩個裝修公路合作完成.工程進度滿足如圖所示的函數(shù)關(guān)系,該家庭共支付工資8000元.
(1)完成此房屋裝修共需多少天?
(2)若按完成工作量的多少支付工資,甲裝修公司應(yīng)得多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線l1⊥x軸于點A(2,0),點B是直線l1上的動點.直線l2:y=x+1交l1于點C,過點B作直線l3垂直于l2,垂足為D,過點O,B的直線l4交l2于點E,當(dāng)直線l1,l2,l3能圍成三角形時,設(shè)該三角形面積為S1,當(dāng)直線l2,l3,l4能圍成三角形時,設(shè)該三角形面積為S2
(1)若點B在線段AC上,且S1=S2,則B點坐標為______;
(2)若點B在直線l1上,且S2=
3
S1,則∠BOA的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l1:y=
2
3
x+
8
3
與直線l2:y=-2x+16相交于點C,l1、l2分別交x軸于A、B兩點.矩形DEFG的頂點D、E分別在直線l1、l2上,頂點F、G都在x軸上,且點G與點B重合.
(1)求△ABC的面積;
(2)求矩形DEFG的邊DE與EF的長;
(3)若矩形DEFG沿x軸的反方向以每秒1個單位長度的速度平移,設(shè)移動時間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)的t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知點A′與點A(-2,3)關(guān)于y軸對稱,直線y=kx-5經(jīng)過點A′,求直線的解析式,并畫出它的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某同學(xué)帶10元錢去文具店買鉛筆,每枝鉛筆定價1.c0元.
(1)寫出剩余的錢y(元)與所買鉛筆x(枝)之間的函數(shù)關(guān)系式為:______;
(2)自變量x的取值范圍是______;
(2)在如圖所示的直角坐標系中畫出剩余的錢與所買鉛筆枝數(shù)的函數(shù)圖象.______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平面直角坐標系中,直線y=
3
3
x
與直線x=3交于點P,點A是直線x=3與x軸的交點,將直線OP繞著點O、直線AP繞著點A以相同的速度逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)過程中,兩條直線交點始終為P,當(dāng)直線OP與y軸正半軸重合時,兩條直線同時停止轉(zhuǎn)動.
(1)當(dāng)旋轉(zhuǎn)角度為15°時,點P坐標為______;
(2)整個旋轉(zhuǎn)過程中,點P所經(jīng)過的路線長為______.

查看答案和解析>>

同步練習(xí)冊答案