【題目】四邊形ABCD是⊙O的內(nèi)接四邊形,連結(jié)AC、BD,且DA=DB.
(1)如圖1,∠ADB=60°.求證:AC=CD+CB.
(2)如圖2,∠ADB=90°.
①求證:AC=CD+CB.
②如圖3,延長AD、BC交于點(diǎn)P,且DC=CB,探究線段BD與DP的數(shù)量關(guān)系,并說明理由.
【答案】(1)見解析;(2)①AC =CD +CB,理由見解析;②BD=2DP,理由見解析
【解析】
(1)在AC上截取AF=BC,連結(jié)DF,可證△DAF≌△DBC,然后證明△DFC是等邊三角形,即可得到AC=CD+CB;
(2)在AC上截取AF=BC,連結(jié)DF,可證△DAF≌△DBC,然后得到△DFC是等腰直角三角形,得到FC =DC,即可得到結(jié)論;
(3)過點(diǎn)D作DF⊥AC于點(diǎn)F,可證△CFD是等腰直角三角形,結(jié)合DC=CB,然后得到DF=CB,可證△DFE≌△CBE,得到DE=BE=BD,然后證明△ADE≌△BDP,即可得到結(jié)論成立.
解:(1)如圖1,證明:在AC上截取AF=BC,連結(jié)DF.
在△DAF與△DBC中,
∴△DAF≌△DBC(SAS),
∴DF=DC,∠CDB=∠ADF,
∵∠CDF=∠CDB +∠EDF=∠ADF +∠EDF=∠ADB=60,
∴△DFC為正三角形,
∴DC=FC,
∴AC=AF +FC=BC +CD.
(2)①AC =CD +CB.
理由:如圖2,在AC上截取AF=BC,連結(jié)DF.
在△DAF與△DBC中,
∴△DAF≌△DBC(SAS),
∴DF=DC,∠CDB=∠ADF,
∵∠CDF=∠CDB +∠EDF=∠ADF +∠EDF=∠ADB=90,
∴△DFC為等腰直角三角形,
∴FC =DC,
∴AC=AF +FC=CD +CB.
②BD=2DP.
理由:如圖3,過點(diǎn)D作DF⊥AC于點(diǎn)F,
∵∠ACD=∠ABD=45°,
∴△CFD是等腰直角三角形,
∴CD=DF,
∵CD=CB,
∴DF=CB,
在△DFE和△CBE中,
,
∴△DFE≌△CBE(AAS),
∴DE=BE=BD,
在△ADE和△BDP中,
,
∴△ADE≌△BDP(ASA),
∴DP=DE=BE=BD,
∴BD=2DP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k>0)的圖像與矩形AOBC的邊AC,BC分別交于點(diǎn)E、F,點(diǎn)C的坐標(biāo)為(8,6),將△CEF沿EF翻折,C點(diǎn)恰好落在OB上的點(diǎn)D處,則k的值為( )
A.B.6C.12D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線y=-x+3與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,點(diǎn)C(m,n)是第二象限內(nèi)一點(diǎn),以點(diǎn)C為圓心的圓與x軸相切于點(diǎn)E,與直線AB相切于點(diǎn)F.
(1)當(dāng)四邊形OBCE是矩形時(shí),求點(diǎn)C的坐標(biāo);
(2)如圖②,若⊙C與y軸相切于點(diǎn)D,求⊙C的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標(biāo)軸只有 2 個(gè)交點(diǎn),則m=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中C類女生有 名,D類男生有 名;將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)計(jì)算扇形統(tǒng)計(jì)圖中D所占的圓心角是 ;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計(jì):今年7月20日豬肉價(jià)格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價(jià)格為每千克多少元?
(2)某超市將進(jìn)貨價(jià)為每千克65元的豬肉,按7月20日價(jià)格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價(jià)每千克下降1元,其日銷售量就增加10千克,超市為了實(shí)現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實(shí)惠,豬肉的售價(jià)應(yīng)該下降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,中,,動(dòng)點(diǎn)從出發(fā),以每秒個(gè)單位長度的速度向終點(diǎn)運(yùn)動(dòng),過點(diǎn)作交于點(diǎn),過點(diǎn)作的平行線,與過點(diǎn)且與垂直的直線交于點(diǎn),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒)
(1)用含的代數(shù)式表示線段的長;
(2)求當(dāng)點(diǎn)落在邊上時(shí)t的值;
(3)設(shè)與重合部分圖形的面積為(平方單位),求與的函數(shù)關(guān)系式;
(4)連結(jié),若將沿它自身的某邊翻折,翻折前后的兩個(gè)三角形形成菱形,直接寫出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“泥興陶,,是欽州的一張文化名片。欽州市某妮興陶公司以每只60元的價(jià)格銷售一種成本價(jià)為40元的文化紀(jì)念杯,每星期可售出100只。后來經(jīng)過市場調(diào)查發(fā)現(xiàn),每只杯子的售價(jià)每降低1元,則平均何星期可多買出10只。若該公司銷售這種文化紀(jì)念杯要想平均每星期獲利2240元,請(qǐng)回答:
(1)每只杯應(yīng)降價(jià)多少元?
(2)在平均每星期獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該公司應(yīng)該按原售價(jià)的幾折出售?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com