【題目】已知關(guān)于x的一元二次方程x2-2x+m=0有兩個不相等的實(shí)數(shù)根.
(1)求實(shí)數(shù)m的最大整數(shù)值;
(2)在(1)的條件下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式+-的值.
【答案】(1)1; (2)5
【解析】分析:(1)若一元二次方程有兩不等實(shí)數(shù)根,則根的判別式△=b-4ac>0,建立關(guān)于m的不等式,求出m的取值范圍,進(jìn)而得出m的最大整數(shù)值;(2)根據(jù)(1)可知:m=1,繼而可得一元二次方程為x-2x+1=0,,根據(jù)根與系數(shù)的關(guān)系,可得, =1,再將+- 變形為(+)2-3 ,則可求得答案.
本題解析:(1)∵Δ=(2)2-4m=8-4m>0,∴m<2,∴m的最大整數(shù)值為1;
(2)原方程為x2-2x+1=0,∴x1+x2=2,x1x2=1,
∴++-x1x2=(x1+x2)2-3x1x2=8-3=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某足球運(yùn)動員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5m的A處正對球門踢出(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.
(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村原有林地108公頃,旱地54公頃,為保護(hù)環(huán)境,需把一部分旱地改造為林地,使旱地占林地面積的20%,設(shè)把x公頃旱地改為林地,則可列方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聊城流傳著一首家喻戶曉的民謠:“東昌府,有三寶,鐵塔、古樓、玉皇皋.”被人們譽(yù)為三寶之一的鐵塔,初建年代在北宋早期,是本市現(xiàn)存最古老的建筑.如圖,測繪師在離鐵塔10米處的點(diǎn)C測得塔頂A的仰角為α,他又在離鐵塔25米處的點(diǎn)D測得塔頂A的仰角為β,若tanαtanβ=1,點(diǎn)D,C,B在同一條直線上,那么測繪師測得鐵塔的高度約為(參考數(shù)據(jù): ≈3.162)( )
A. 15.81米 B. 16.81米 C. 30.62米 D. 31.62米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x+m=0,有兩個不相等的實(shí)數(shù)根.
⑴求實(shí)數(shù)m的最大整數(shù)值;
⑵在⑴的條下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016·西寧中考)如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, ,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi)兩條直線的位置關(guān)系可能是( )
A.相交或垂直
B.垂直或平行
C.平行或相交
D.平行或相交或重合
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,-3),點(diǎn)D與點(diǎn)C關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線對稱軸上的一動點(diǎn),當(dāng)△PAC的周長最小時,求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)Q在x軸正半軸上,且∠ADQ=∠DAC,求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com