【題目】如圖,拋物線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn)、,點(diǎn)坐標(biāo)為.
求該拋物線(xiàn)的解析式;
拋物線(xiàn)的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);
點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
若平行于軸的動(dòng)直線(xiàn)與該拋物線(xiàn)交于點(diǎn),與直線(xiàn)交于點(diǎn),點(diǎn)的坐標(biāo)為.問(wèn):是否存在這樣的直線(xiàn),使得是等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)點(diǎn)的坐標(biāo)為;(3);(4)的坐標(biāo)為:或或或.
【解析】
(1)把A、C兩點(diǎn)坐標(biāo)代入拋物線(xiàn)解析式可求得a、c的值,可求得拋物線(xiàn)解析;
(2)可求得點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C′的坐標(biāo),連接C′N(xiāo)交x軸于點(diǎn)K,再求得直線(xiàn)C′K的解析式,可求得K點(diǎn)坐標(biāo);
(3)過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,設(shè)Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關(guān)于m的解析式,再根據(jù)二次函數(shù)的性質(zhì)可求得Q點(diǎn)的坐標(biāo);
(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質(zhì)求得F點(diǎn)的坐標(biāo),進(jìn)一步求得P點(diǎn)坐標(biāo)即可.
∵拋物線(xiàn)經(jīng)過(guò)點(diǎn),,
∴,解得,
∴拋物線(xiàn)解析式為;
由可求得拋物線(xiàn)頂點(diǎn)為,
如圖,作點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),連接交軸于點(diǎn),則點(diǎn)即為所求,
設(shè)直線(xiàn)的解析式為,
把、點(diǎn)坐標(biāo)代入可得,解得,
∴直線(xiàn)的解析式為,
令,解得,
∴點(diǎn)的坐標(biāo)為;
設(shè)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),如圖,
由,得,,
∴點(diǎn)的坐標(biāo)為,,,
又∵,
∴,
∴,即,
解得;
∴.
又∵,
∴當(dāng)時(shí),有最大值,此時(shí);
存在.在中,
若,∵,,
∴.
又在中,,
∴.
∴.
∴.
此時(shí),點(diǎn)的坐標(biāo)為.
由,得,.
此時(shí),點(diǎn)的坐標(biāo)為:或;
若,過(guò)點(diǎn)作軸于點(diǎn).
由等腰三角形的性質(zhì)得:,
∴.
∴在等腰直角中,.
∴.
由,得,.
此時(shí),點(diǎn)的坐標(biāo)為:或;
若,
∵,且.
∴.
∴點(diǎn)到的距離為.
而,與矛盾.
∴在上不存在點(diǎn)使得.
此時(shí),不存在這樣的直線(xiàn),使得是等腰三角形.
綜上所述,存在這樣的直線(xiàn),使得是等腰三角形.所求點(diǎn)的坐標(biāo)為:或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D為AB邊上一點(diǎn).求證:(1)BD=AE.(2)若線(xiàn)段AD=5,AB=17,求線(xiàn)段ED的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC中,D為AC上一點(diǎn),E為AB延長(zhǎng)線(xiàn)上一點(diǎn),DE⊥AC交BC于點(diǎn)F,且DF=EF.
(1)求證:CD=BE;
(2)若AB=12,試求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸交于點(diǎn),對(duì)稱(chēng)軸為,則下列結(jié)論中正確的是( )
A.
B. 當(dāng)時(shí),隨的增大而增大
C.
D. 是一元二次方程的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是二次函數(shù)的圖象,其頂點(diǎn)坐標(biāo)為.
求出圖象與軸的交點(diǎn),的坐標(biāo);
在二次函數(shù)的圖象上是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
將二次函數(shù)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)直線(xiàn)與此圖象有兩個(gè)公共點(diǎn)時(shí),的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,點(diǎn)為三條角平分線(xiàn)的交點(diǎn),于,于,于,且,,,則點(diǎn)到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,連接AC.
(1)求AC的長(zhǎng)度.
(2)求證△ACD是直角三角形.
(3)求四邊形ABCD的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B、C三地在同一直線(xiàn)上,甲、乙兩車(chē)分別從A,B兩地相向勻速行駛,甲車(chē)先出發(fā)2小時(shí),甲車(chē)到達(dá)B地后立即調(diào)頭,并將速度提高10%后與乙車(chē)同向行駛,乙車(chē)到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過(guò)一段時(shí)間后兩車(chē)同時(shí)到達(dá)C地,設(shè)兩車(chē)之間的距離為y(千米),甲行駛的時(shí)間x(小時(shí)).y與x的關(guān)系如圖所示,則B、C兩地相距_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是的角平分線(xiàn)OC上一點(diǎn),PNOB于點(diǎn)N,點(diǎn)M是線(xiàn)段ON上一點(diǎn),已知OM=3,ON=4,點(diǎn)D為OA上一點(diǎn),若滿(mǎn)足PD=PM,則OD的長(zhǎng)度為________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com