【題目】如圖,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中點(diǎn).點(diǎn)P以每秒1個(gè)單位長度的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)以每秒3個(gè)單位長度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng).點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).
(1)當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),PQ∥CD.
(2)當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),以點(diǎn)P,Q,E,D為頂點(diǎn)的四邊形是平行四邊形
【答案】(1)1.5秒(2)1或3.5秒
【解析】根據(jù)題意得:AP=t,CQ=3t,
∵AD=6,BC=16,
∴PD=AD-AP=6-t;
(1)∵AD∥BC,
∴當(dāng)PD=CQ時(shí),四邊形CDPQ是平行四邊形,此時(shí)PQ∥CD,
∴6-t=3t,
解得:t=1.5;
∴當(dāng)運(yùn)動(dòng)時(shí)間t為1.5秒時(shí),PQ∥CD.
(2)∵E是BC的中點(diǎn),
∴BE=CE=BC=8,
①當(dāng)Q運(yùn)動(dòng)到E和B之間,設(shè)運(yùn)動(dòng)時(shí)間為t,則得:
3t-8=6-t,
解得:t=3.5;
②當(dāng)Q運(yùn)動(dòng)到E和C之間,設(shè)運(yùn)動(dòng)時(shí)間為t,則得:
8-3t=6-t,
解得:t=1,
∴當(dāng)運(yùn)動(dòng)時(shí)間t為1或3.5秒時(shí),以點(diǎn)P,Q,E,D為頂點(diǎn)的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點(diǎn)M,BE⊥CD于點(diǎn)E.
(1)求證:∠BME=∠MAB;
(2)求證:BM2=BEAB;
(3)若BE=,sin∠BAM=,求線段AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°后得到矩形A1BC1D1,C1D1與AD交于點(diǎn)M,延長DA交A1D1于F,若AB=1,BC=,則AF的長度為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x=﹣2n , y=﹣3+4n , 則x,y的關(guān)系是( )
A.y+3=x2
B.y﹣3=x2
C.3y=x2
D.﹣3y=x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在進(jìn)行某批乒乓球的質(zhì)量檢驗(yàn)時(shí),當(dāng)抽取了2000個(gè)乒乓球時(shí),發(fā)現(xiàn)優(yōu)等品有1866個(gè),則這批乒乓球“優(yōu)等品”的概率的估計(jì)值是______(精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程x2+2x+a=0不存在實(shí)數(shù)根,則a的取值范圍是( )
A.a<1
B.a>1
C.a≤1
D.a≥1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com