【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.
利用網(wǎng)格點(diǎn)畫圖:

(1)畫出△A′B′C′;
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為

【答案】
(1)


(2)

如圖


(3)

如圖


(4)8
【解析】(4)B'C'=4,B'C'上的高為4,
則面積為:×4×4=8.
所以答案是8.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的“三線”(1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對(duì)邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi)),還要掌握三角形的面積(三角形的面積=1/2×底×高)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=6CM.點(diǎn)P,Q同時(shí)由B,A兩點(diǎn)出發(fā),分別沿射線BC,AC方向以1cm/s的速度勻速運(yùn)動(dòng).
(1)幾秒后△PCQ的面積是△ABC面積的一半?
(2)連結(jié)BQ,幾秒后△BPQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(m﹣1)x2+5x+m2﹣1=0的常數(shù)項(xiàng)為0,則m的值等于(
A.1
B.﹣1
C.±1
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BD=2AB,AC與BD相交于點(diǎn)O,點(diǎn)E、F、G分別是OC、OB、AD的中點(diǎn). 求證:

(1)DE⊥OC;
(2)EG=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算
(1);
(2)

(3)
(4)
(5)
(6)
(7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是2,3,點(diǎn)B的坐標(biāo)是2,-2,若把線段AB向左平移3個(gè)單位后變?yōu)锳B,則AB可表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,ABC的平分線交AC于點(diǎn)E,過點(diǎn)EBE的垂線交AB于點(diǎn)F,OBEF的外接圓.

1)求證:ACO的切線;

2)過點(diǎn)EEHAB,垂足為H,求證:CD=HF;

3)若CD=1EH=3,求BFAF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知22×83=2n , 則n的值為(
A.18
B.8
C.7
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長(zhǎng)分別是20、30、40,其三條角平分線將△ABC分成三個(gè)三角形,則SABO:SBCO:SCAO等于

查看答案和解析>>

同步練習(xí)冊(cè)答案