【題目】如圖,某中學準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設計一種砌法,使矩形花園的面積為300m2

【答案】解:設 m,則 m,
根據(jù)題意得方程:
解得:
(不合題意,舍去),
(符合題意).
答:當砌墻寬為15米,長為20米時,花園面積為300平方米.

【解析】抓住已知矩形花園ABCD的AD邊靠墻,因此設AB為Xm,即可表示出BC邊,再根據(jù)矩形的面積公式列出方程,根據(jù)502x≤25,得出x≥12.5,即可得出結果。
【考點精析】本題主要考查了因式分解法的相關知識點,需要掌握已知未知先分離,因式分解是其次.調整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點DEG上運動,則△CDF周長的最小值為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知射線AC是∠MAN的角平分線, NAC=60°, B, D分別是射線AN. AM上的點,連接BD.

(1)在圖①中,若∠ABC=ADC=90°,求∠CDB的大;

(2)在圖②中,若∠ABC+ADC=180°,求證:四邊形ABCD的面積是個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c(a≠0)與x軸的兩個交點分別為A(-2,0)和B(6,0),當y<0時,x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等腰直角三角形ABC的直角頂點置于直線,且過A,B兩點分別作直線l的垂線,垂足分別為D,E.

1)請你在圖中找出一對全等三角形,并寫出證明過程;

2)若BE=3,DE=5,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOB的頂點O與原點重合,直角頂點Ax軸上,頂點B的坐標為(4,3),直線x軸、y軸分別交于點D、E,交OB于點F.

(1)寫出圖中的全等三角形及理由;

(2)OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我縣某包裝生產企業(yè)承接了一批禮品盒制作業(yè)務,為了確保質量,該企業(yè)進行試生產.他們購得規(guī)格是的標準板材作為原材料,每張標準板材再按照裁法一或裁法二裁下型與型兩種板材.如圖所示,(單位:

1)列出方程(組),求出圖甲中的值.

2)在試生產階段,若將張標準板材用裁法一裁剪,張標準板材用裁法二裁剪,再將得到的A型與B型板材做側面和底面,做成如圖的豎式與橫式兩種無蓋禮品盒.

①兩種裁法共產生A型板材   張,B型板材   張;

②設做成的豎式無蓋禮品盒個,橫式無蓋禮品盒的個,根據(jù)題意完成表格:

禮品盒板

豎式無蓋(個)

橫式無蓋(個)

A型(張)

B型(張)

③做成的豎式和橫式兩種無蓋禮品盒總數(shù)最多是   個;

此時,橫式無蓋禮品盒可以做 個(在橫線上直接寫出答案,無需書寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量樓的高度,自樓的頂部A看地面上的一點B,俯角為30°,已知地面上的這點與樓的水平距離BC為30m,那么樓的高度AC為m(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,再回答問題:如果x1、x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,那么x1+x2 , x1x2與系數(shù)a、b、c的關系是:x1+x2= , ,例如:若x1、x2是方程2x2﹣x﹣1=0的兩個根,則x1+x2=﹣ = ,x1x2= .若x1、x2是方程2x2+x﹣3=0的兩個根.
(1)求x1+x2 , x1x2;
(2)求 的值.

查看答案和解析>>

同步練習冊答案