【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計(jì)如圖所示.圓O的圓心與矩形ABCD對(duì)角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(E為上切點(diǎn)),與左右兩邊相交(F,G為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,根據(jù)設(shè)計(jì)要求,若∠EOF=45°,則此窗戶的透光率(透光區(qū)域與矩形窗面的面積的比值)為

【答案】
【解析】解:設(shè)⊙O與矩形ABCD的另一個(gè)交點(diǎn)為M, 連接OM、OG,則M、O、E共線,
由題意得:∠MOG=∠EOF=45°,
∴∠FOG=90°,且OF=OG=1,
∴S透明區(qū)域= +2× ×1×1= +1,
過O作ON⊥AD于N,
∴ON= FG= ,
∴AB=2ON=2× = ,
∴S矩形=2× =2 ,
= =
所以答案是:

【考點(diǎn)精析】掌握扇形面積計(jì)算公式是解答本題的根本,需要知道在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,射線CBOA,C=OAB=100°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度數(shù);

(2)若平行移動(dòng)AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;

(3)在平行移動(dòng)AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)P移動(dòng)到AB、CD之間時(shí),如圖(1),這時(shí)∠P與∠A、∠C有怎樣的關(guān)系?證明你的結(jié)論;
(2)當(dāng)點(diǎn)P移動(dòng)到圖(2)、圖(3)的位置時(shí),∠P、∠A、∠C又有怎樣的關(guān)系?請(qǐng)分別寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)通過計(jì)算下列各式的值探究問題:

; ; ;

探究:對(duì)于任意非負(fù)有理數(shù)a,

; ; ;

探究:對(duì)于任意負(fù)有理數(shù)a,

綜上,對(duì)于任意有理數(shù)a,

(2)應(yīng)用(1)所得的結(jié)論解決問題:有理數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,化簡:+|a+b|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的兩個(gè)正方形,大正方形ABCD邊長為a,小正方形CEFG邊長為b(a>b),M在BC邊上,且BM=b,連接AM,MF,MF交CG于點(diǎn)P,將△ABM繞點(diǎn)A旋轉(zhuǎn)至△ADN,將△MEF繞點(diǎn)F旋轉(zhuǎn)至△NGF,給出以下五個(gè)結(jié)論:①∠MAD=∠AND;②CP=b﹣ ;③△ABM≌△NGF;④S四邊形AMFN=a2+b2;⑤A,M,P,D四點(diǎn)共圓,其中正確的個(gè)數(shù)是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個(gè)角的補(bǔ)角比它的余角的 3 倍大 30°,求這個(gè)角的度數(shù);

(2)如圖,點(diǎn) C、D在線段 AB上, D是線段 AB的中點(diǎn), AC AD , AB6,求線段 CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點(diǎn),連接AO并延長,交BC的延長線于點(diǎn)E.

(1)求證:△AOD ≌ △EOC;

(2)連接AC,DE,當(dāng)∠B∠AEB _______ °時(shí),四邊形ACED是正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)CCF平分∠DCEDE于點(diǎn)F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】縣內(nèi)某小區(qū)正在緊張建設(shè)中,現(xiàn)有大量的沙石需要運(yùn)輸,“建安”車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石.
(1)求“建安”車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,“建安”車隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊(duì)有多少種購買方案,請(qǐng)你一一寫出.

查看答案和解析>>

同步練習(xí)冊(cè)答案