【題目】如圖,是邊長為的等邊三角形,點(diǎn)上且,點(diǎn)從點(diǎn)出發(fā),向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以相同的速度向點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),運(yùn)動(dòng)停止,相交于點(diǎn),連接,在此過程中線段長度的最小值是____

【答案】

【解析】

如圖連接OC,作DM⊥OC于M,根據(jù)已知條件只要證明出∠OCB=30°,根據(jù)垂線段最短的性質(zhì)即可解決問題.

如圖,連接OC,作DM⊥OC于M,

△ABC是等邊三角形,

∴∠BAF=∠ABE=∠ACB=60°,

∵AF=BE,AB=BA,

∴△ABF≌△BAE,

∴∠ABO=∠OBA,

∴OA=OB,

∵CA=CB,

∴OC垂直平分線段AB,

∴∠OCB=∠ACO=30°,

當(dāng)點(diǎn)O與點(diǎn)M重合時(shí),OD的值最小,最小值為:DM=CD=,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時(shí),若,用含m、n的式子分別表示,得   ,   

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結(jié)論正確的是(
A.當(dāng)a=1時(shí),函數(shù)圖象過點(diǎn)(﹣1,1)
B.當(dāng)a=﹣2時(shí),函數(shù)圖象與x軸沒有交點(diǎn)
C.若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小
D.若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題的個(gè)數(shù)( )
(1)⊙O的半徑為5,點(diǎn)P在直線l上,且OP=5,則直線l與⊙O相切
(2)在Rt△ABC中,∠C=90°,AC=5,BC=12,則△ABC的外接圓半徑為6.5
(3)正多邊形都是軸對(duì)稱圖形,也都是中心對(duì)稱圖形
(4)三角形的外心到三角形各邊的距離相等.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為,點(diǎn)在邊上,且,將沿對(duì)折至,延長交邊于點(diǎn),連接,則下列結(jié)論:①;;的面積相等;⑤,其中正確的個(gè)數(shù)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,AB=AC,BAC=90°,OBC的中點(diǎn)。

(1)寫出點(diǎn)OABC的三個(gè)頂點(diǎn)A、B、C的距離的大小關(guān)系并說明理由;

(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)中保持AN=BM,請(qǐng)判斷OMN的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y= 的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y= 的圖象上,且OA⊥OB,cosA= ,則k的值為( )

A.﹣3
B.﹣4
C.﹣
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線ABy軸于A點(diǎn),交X軸于B點(diǎn),A(0,6),B(6,0).點(diǎn)D是線段BO上一點(diǎn),BNADAD的延長線于點(diǎn)N.

(1)如圖,若OMBNAD于點(diǎn)M.點(diǎn)O0GBN,交BN的延長線于點(diǎn)G,求證:AM=BG

(2)如圖,若∠ADO=67.5°,OMBNAD于點(diǎn)M,交AB于點(diǎn)Q,求的值.

(3)如圖,若OCABBN的延長線于點(diǎn)C.請(qǐng)證明:∠CDN+2BDN=180°.

查看答案和解析>>

同步練習(xí)冊(cè)答案