【題目】如圖,圓內(nèi)接四邊形ABCD,AB是⊙O的直徑,OD∥A交BC于點(diǎn)E.
(1)求證:△BCD為等腰三角形;
(2)若BE=4,AC=6,求DE.
【答案】(1)見(jiàn)解析;(2)2
【解析】
(1)根據(jù)OD⊥BC于E可知=,所以BD=CD,故可得出結(jié)論;
(2)先根據(jù)圓周角定理得出∠ACB=90°,再OD∥AC,由于點(diǎn)O是AB的中點(diǎn),所以OE是△ABC的中位線,故OE=AC,在Rt△OBE中根據(jù)勾股定理可求出OB的長(zhǎng),故可得出DE的長(zhǎng),進(jìn)而得出結(jié)論.
解:(1)∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OD∥AC,
∵OD⊥BC
∴=,
∴BD=CD,
∴△BDC是等邊三角形.
(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OD∥AC,
∵點(diǎn)O是AB的中點(diǎn),
∴OE是△ABC的中位線,
∴OE=AC=×6=3,
在Rt△OBE中,
∵BE=4,OE=3,
∴OB===5,即OD=OB=5,
∴DE=OD﹣OE=5﹣3=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC、BD是對(duì)角線,將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:①四邊形AEGF是菱形;②△HED的面積是1﹣;③∠AFG=135°;④BC+FG=.其中正確的結(jié)論是_____.(填入正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,為對(duì)角線,,點(diǎn)分別為邊上的點(diǎn),連接平分.
(1)如圖,若且,求平行四邊形的面積.
(2)如圖,若過(guò)作交于求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問(wèn)題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知:在和中,,,分別在上,連接,點(diǎn)為線段的中點(diǎn),連接,則線段與之間的數(shù)量關(guān)系是 ,位置關(guān)系是
(2)如圖2所示,已知:正方形將斜邊的中點(diǎn)與點(diǎn)重合,直角頂點(diǎn)落在正方形的邊上,的兩直角邊分別交邊于兩點(diǎn)(點(diǎn)與點(diǎn)重合),求證:;
(3)如圖3,若將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),兩直角邊分別交邊于兩點(diǎn),如圖3所示:判斷四條線段之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn).正方形ABCD的頂點(diǎn)C、D在第一象限,頂點(diǎn)D在反比例函數(shù)(k≠0)的圖象上.若正方形ABCD向左平移n個(gè)單位后,頂點(diǎn)C恰好落在反比例函數(shù)的圖象上,則n的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為(m,0),其中m>0.
(1)求點(diǎn)E、F的坐標(biāo)(用含m的式子表示);(5分)
(2)連接OA,若△OAF是等腰三角形,求m的值;(4分)
(3)如圖(2),設(shè)拋物線y=a(x-m-6)2+h經(jīng)過(guò)A、E兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM=90°,求a、h、m的值. (5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B(4,0),拋物線的對(duì)稱軸交x軸于點(diǎn)D,CE∥AB,并與拋物線的對(duì)稱軸交于點(diǎn)E.現(xiàn)有下列結(jié)論:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正確結(jié)論的序號(hào)是 _____________________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn).拋物線分別交軸于、兩點(diǎn),交軸于點(diǎn),.
(1)求該拋物線的解析式.
(2)如圖2,點(diǎn)為第二象限拋物線上一點(diǎn),過(guò)點(diǎn)作于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段的長(zhǎng)度為,求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),如圖3,點(diǎn)在線段上,點(diǎn)在線段上,且,的面積為,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com