【題目】如圖,ORt△ABC的外接圓,弦AC的弦心距為5.

1)尺規(guī)作圖:作出∠BOC的平分線,并標(biāo)出它與劣弧BC的交點(diǎn)E.(保留作圖痕跡,不寫作法);

2)若(1)中的點(diǎn)E到弦BC的距離為3,求弦AC的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2

【解析】

1)根據(jù)角平分線的一般作法作圖;以O為圓心,任意長(zhǎng)為半徑畫弧交OB,OC于兩點(diǎn),再分別以兩交點(diǎn)為圓心,大于兩交點(diǎn)距離的長(zhǎng)為半徑畫弧,兩弧交于一點(diǎn),連接點(diǎn)O與該交點(diǎn),交圓于點(diǎn)EOE即為所求.2)設(shè)OEBC相交于點(diǎn)F,作ODAC,AC于點(diǎn)D,設(shè)⊙O的半徑為x,則,,利用勾股定理,求得半徑長(zhǎng),證四邊形ODCF為矩形,求出CD;即可求得AC.

1OE為所求:

2)設(shè)OEBC相交于點(diǎn)F,作ODAC,AC于點(diǎn)D

OB=OC,OE平分∠BOC

OEBC

EF=3

∴四邊形ODCF為矩形

CD=OF

設(shè)⊙O的半徑為x

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有7張如圖1的長(zhǎng)為a,寬為bab)的小長(zhǎng)方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足(  )

A. a2bB. a3bC. a3.5bD. a4b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線段OA繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)P,B兩點(diǎn),則k的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,23,4的卡片,這些卡片除數(shù)字外都相同.小蕓同學(xué)按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加.如圖是她所畫的樹(shù)狀圖的一部分.

1)由如圖分析,小蕓的游戲規(guī)則是:從袋子中隨機(jī)抽出一張卡片后   (填放回不放回),再隨機(jī)抽出一張卡片;

2)幫小蕓完成樹(shù)狀圖;

3)求小蕓兩次抽到的數(shù)字之和為奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做等高底三角形,這條邊叫做這個(gè)三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請(qǐng)說(shuō)明理由.

(2)問(wèn)題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對(duì)稱圖形得到A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點(diǎn)A在直線l2上,有一邊的長(zhǎng)是BC倍.將ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點(diǎn)D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C為O上一點(diǎn),其中AB=4,AOC=120°,P為O上的動(dòng)點(diǎn),連AP,取AP中點(diǎn)Q,連CQ,則線段CQ的最大值為( 。

A. 3 B. 1+ C. 1+3 D. 1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,

(1)求DE的長(zhǎng);

(2)過(guò)點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長(zhǎng);

(3)過(guò)點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(2,0),以OA為邊在第一象限內(nèi)作等邊OAB,Cx軸正半軸上的一個(gè)動(dòng)點(diǎn)(OC2),連接BC,以BC為邊在第一象限內(nèi)作等邊BCD,直線DAy軸于E點(diǎn).

1)求證:OBC≌△ABD

2)隨著C點(diǎn)的變化,直線AE的位置變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出直線AE的解析式.

3)以線段BC為直徑作圓,圓心為點(diǎn)F,當(dāng)C點(diǎn)運(yùn)動(dòng)到何處時(shí),直線EF∥直線BO;這時(shí)⊙F和直線BO的位置關(guān)系如何?請(qǐng)給予說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)M(﹣5,3)分別作x軸,y軸的垂線與反比例函數(shù)y的圖象交于A,B兩點(diǎn),若四邊形MAOB的面積為24,則k_____

查看答案和解析>>

同步練習(xí)冊(cè)答案