【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE.
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
【答案】(1)證明見解析;(2)8.
【解析】
(1)根據(jù)矩形的性質得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根據(jù)菱形的性質得到AD∥BC,得到∠GBF=∠EDH,根據(jù)全等三角形的性質即可得到結論;
(2)連接EG,根據(jù)菱形的性質得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四邊形ABGE是平行四邊形,得到AB=EG,于是得到結論.
解:(1)∵四邊形EFGH是矩形,
∴EH=FG,EH//FG,
∴∠GFH=∠EHF,
∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,
∴∠BFG=∠DHE,
∵四邊形ABCD是菱形,
∴AD//BC,
∴∠GBF=∠EDH,
∴△BGF≌△DEH(AAS),
∴BG=DE.
(2)連接EG,∵四邊形ABCD是菱形,
∴AD=BC,
∵E為AD中點,
∴AE=ED,
∵BG=DE,
∴AE=BG,AE//BG,
∴四邊形ABGE是平行四邊形,
∴AB=EG,
∵EG=FH=2,
∴AB=2,
∴菱形ABCD的周長=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設P點橫坐標為t,線段PQ的長為d,求出d與t之間的函數(shù)關系式,并寫出相應的自變量t的取值范圍;
(3)在(2)的條件下,當點P在線段BC上時,設PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2-(m+3)y+(5m2-2m+13)=0 (m為常數(shù))的兩個實數(shù)根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△的面積;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】參與兩個數(shù)學活動,再回答問題:
活動:觀察下列兩個兩位數(shù)的積兩個乘數(shù)的十位上的數(shù)都是9,個位上的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,,,.
活動:觀察下列兩個三位數(shù)的積兩個乘數(shù)的百位上的數(shù)都是9,十位上的數(shù)與個位上的數(shù)組成的數(shù)的和等于,猜想其中哪個積最大?
,,,,,,.
分別寫出在活動、中你所猜想的是哪個算式的積最大?
對于活動,請用二次函數(shù)的知識證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線和相交于點,,在射線上取一點,使,過點作于點,是線段上的一個動點(不與點重合),過點作的垂線交射線于點.
(1)確定點的位置,在線段上任取一點,根據(jù)題意,補全圖形;
(2)設cm,cm,探究函數(shù)隨自變量的變化而變化的規(guī)律.
①通過取點、畫圖、測量,得到了與的幾組對應值,如下表:
/cm | ||||||
/cm |
(要求:補全表格,相關數(shù)值保留一位小數(shù))
②)建立平面直角坐標系,描出以補全后的表中各對應值為坐標的點,畫出該函數(shù)的圖象;
③結合畫出的函數(shù)圖象,解決問題:當為斜邊上的中線時,的長度約為_____cm(結果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示A、B、C、D四點在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點P,在上取一點Q,使得∠APQ=130°,則下列敘述何者正確( )
A. Q點在上,且>B. Q點在上,且<
C. Q點在上,且>D. Q點在上,且<
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班數(shù)學興趣小組經(jīng)過市場調查,整理出某種商品在第天的售價與銷量的相關信息如下表:
時間(天) | ||
售價(元/件) | 90 | |
每天銷量(件) |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為元
(1)求出與的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P在正方形ABCD的對角線AC上,正方形的邊長是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點M、N.
(1)操作發(fā)現(xiàn):如圖2,固定點P,使△PEF繞點P旋轉,當PM⊥BC時,四邊形PMCN是正方形.填空:①當AP=2PC時,四邊形PMCN的邊長是_________;②當AP=nPC時(n是正實數(shù)),四邊形PMCN的面積是__________.
(2)猜想論證
如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點P在矩形ABCD的對角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點M、N,固定點P,使△PEF繞點P旋轉,則=_______.
(3)拓展探究
如圖4,當四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時,點P在AC上,PE、PF分別交BC,CD于M、N點,固定P點,使△PEF繞點P旋轉,請?zhí)骄?/span>的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com