【題目】在平面直角坐標系中,已知點A(0,2),B(4,0),C(4,3)三點.
(1)建立平面直角坐標系并描出A、B、C三點
(2)求△ABC的面積;
(3)如果在第二象限內(nèi)有一點P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點坐標.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12,點E是AD上的一點,AE=6,BE的垂直平分線交BC的延長線于點F,連接EF交CD于點G.若G是CD的中點,則BC的長是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=2,點P是線段AB上一點,分別以AP、BP為邊作兩個正方形.
(1)如果APx,求兩個正方形的面積之和S;
(2)當點P是AB的中點時,求兩個正方形的面積之和S1;
(3)當點P不是AB的中點時,比較(1)中的S與(2)中S1的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小左同學(xué)想利用影長測量學(xué)校旗桿的高度,如圖,她在某一時刻立一長度為1米的標桿,測得其影長為米,同時旗桿投影的一部分在地上,另一部分在某一建筑物的墻上,測得旗桿與建筑物的距離為10米,旗桿在墻上的影高為2米,請幫小左同學(xué)算出學(xué)校旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值5x2-[2xy-3(xy+2)+4x2],其中x=-2,y=
(2)若(2a-1)2+|2a+b|=0,且|c-1|=2,求c(a3-b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《莊子·天下》:“一尺之棰,日取其半,萬世不竭.”意思是說:一尺長的木棍,每天截掉一半,永遠也截不完.我國智慧的古代人在兩千多年前就有了數(shù)學(xué)極限思想,今天我們運用此數(shù)學(xué)思想研究下列問題.
(規(guī)律探索)
(1)如圖1所示的是邊長為1的正方形,將它剪掉一半,則S陰影1=1-=__________;
如圖2,在圖1的基礎(chǔ)上,將陰影部分再裁剪掉—半,則S陰影2=1--()2=_______;
同種操作,如圖3,S陰影3=1--()2-()3=__________;
如圖4,S陰影4=1--()2-()3-()4=___________;
……
若同種地操作n次,則S陰影n=1--()2-()3-…-()n=_________.
(規(guī)律歸納)
(2)直接寫出+++…+的化簡結(jié)果:_________.
(規(guī)律應(yīng)用)
(3)直接寫出算式+++…+的值:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和直角△ABE,∠AEB=90°,將△ABE繞點O旋轉(zhuǎn)180°得到△CDF
(1) 在圖中畫出點O和△CDF,并簡要說明作圖過程
(2) 若AE=12,AB=13,求EF的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD, ,.求度數(shù).
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得 _______.
問題遷移:如圖3,AD∥BC,點P在射線OM上運動, , .
(1)當點P在A、B兩點之間運動時, 、、之間有何數(shù)量關(guān)系?請說明理由.
(2)如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出、、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)
(2)(+6)-(+12)+(+9.6)-(+7.6)
(3)5×―×
(4)()×(-60 )
(5)(2)-(+10)+(-8)-(+3)
(6)﹣14﹣(1﹣0.5)××[1﹣(﹣2)2];
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com