【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當點P在線段AB上時,求證:△AQP∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.

【答案】
(1)證明:∵PQ⊥AQ,

∴∠AQP=90°=∠ABC,

在△APQ與△ABC中,

∵∠AQP=90°=∠ABC,∠A=∠A,

∴△AQP∽△ABC


(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.

∵∠QPB為鈍角,

∴當△PQB為等腰三角形時,

(i)當點P在線段AB上時,如題圖1所示.

∵∠QPB為鈍角,

∴當△PQB為等腰三角形時,只可能是PB=PQ,

由(1)可知,△AQP∽△ABC,

,即 ,解得:PB= ,

∴AP=AB﹣PB=3﹣ = ;

(ii)當點P在線段AB的延長線上時,如題圖2所示.

∵∠QBP為鈍角,

∴當△PQB為等腰三角形時,只可能是PB=BQ.

∵BP=BQ,∴∠BQP=∠P,

∵∠BQP+∠AQB=90°,∠A+∠P=90°,

∴∠AQB=∠A,

∴BQ=AB,

∴AB=BP,點B為線段AP中點,

∴AP=2AB=2×3=6.

綜上所述,當△PQB為等腰三角形時,AP的長為 或6


【解析】(1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△AQP∽△ABC;(2)當△PQB為等腰三角形時,有兩種情況,需要分類討論.(i)當點P在線段AB上時,如題圖1所示.由三角形相似(△AQP∽△ABC)關(guān)系計算AP的長;(ii)當點P在線段AB的延長線上時,如題圖2所示.利用角之間的關(guān)系,證明點B為線段AP的中點,從而可以求出AP.
【考點精析】本題主要考查了等腰三角形的性質(zhì)和直角三角形斜邊上的中線的相關(guān)知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知xy<0,x<y,|x|=1,|y|=2.

(1)xy的值;

(2)+(xy-1)2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長為(
A. cm
B. cm
C. cm
D.4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l與⊙相切于點D,過圓心O作EF∥l交⊙O于E、F兩點,點A是⊙O上一點,連接AE,AF,并分別延長交直線于B、C兩點;若⊙的半徑R=5,BD=12,則∠ACB的正切值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,長方形 ABCD 中,AB3cm,BC6cm,P 為矩形 ABCD 上的動點,動點 P A 出發(fā),沿著 A-B-C-D 運動到 D 點停止,速度為 1cm/s,設(shè)點 P 運動時間為 x 秒,△APD 的面積為 ycm.

1)填空:①當 x6 時,對應(yīng) y 的值為________9x12 時,y x 之間的關(guān)系式為_____;

2)當 y3 時,求 x 的值;

3)當 P 在線段 BC 上運動時,是否存在點 P 使得△APD 的周長最?若存在,求出此時∠APD 的度數(shù);若不存在,請說明理由.

圖1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖一次函數(shù)y= x+1的圖象與x軸交于點A,與y軸交于點B;二次函數(shù)y= x2+bx+c的圖象與一次函數(shù)y= x+1的圖象交于B、C兩點,與x軸交于D、E兩點且D點坐標為(1,0).

(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點P,使得△PBC是以P為直角頂點的直角三角形?若存在,求出所有的點P,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點,AC與DE交于P點,以直線BC為x軸,點E為原點建立直角坐標系.

(1)求△ABC與△DEF的頂點坐標;

(2)判斷△PEC的形狀;

(3)求△PEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l與⊙相切于點D,過圓心O作EF∥l交⊙O于E、F兩點,點A是⊙O上一點,連接AE,AF,并分別延長交直線于B、C兩點;若⊙的半徑R=5,BD=12,則∠ACB的正切值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤SCEF=2SABE , 其中結(jié)論正確的個數(shù)為( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

同步練習冊答案