如圖,在平面直角坐標系中,有二次函數(shù),頂點為H,與x軸交于A、B兩點(A在B左側),易證點H、B關于直線l:對稱,且A在直線l上.過點B作直線BK∥AH交直線l于K點,M、N分別為直線AH和直線l上的兩個動點,連接HN、NM、MK,則HN+NM+MK的最小值為   
【答案】分析:=0,則可求出拋物線和x軸的交點坐標,即A和B的坐標,再把拋物線解析式配方可求出頂點H的坐標,進而求出過A和H點的直線解析式,
因為過點B作直線BK∥AH交直線l于K點,所以直線BK的斜率和直線AH的相等,又過B,所以可求出直線BK的解析式,再把直線l的解析式和BK的解析式聯(lián)立,即可求出K的坐標,根據(jù)點H、B關于直線AK對稱,得出HN+MN的最小值是MB,過點K作直線AH的對稱點Q,連接QK,交直線AH于E,得到BM+MK的最小值是BQ,即BQ的長是HN+NM+MK的最小值,由勾股定理得QB=8,即可得出答案.
解答:解:設=0,
解得x1=-3,x2=1,
∵B點在A點右側,
∴A點坐標為(-3,0),B點坐標為(1,0),
=-(x+1)2+2,
∴頂點H的坐標是(-1,2),
設直線AH的解析式為y=kx+b,把A和H點的坐標代入求出k=,b=3,
∵過點B作直線BK∥AH,
∴直線BK的解析式為y=mx+n中的m=
又因為B在直線BK上,代入求出n=-,
∴直線BK的解析式為:y=x-,
聯(lián)立解得:,
∴交點K的坐標是(3,2),
則BK=4,
∵點H、B關于直線AK對稱,K(3,2),
∴HN+MN的最小值是MMB,KD=KE=2
過K作KD⊥x軸于D,作點K關于直線AH的對稱點Q,連接QK,交直線AH于E,KD=KE=2,
則QM=MK,QE=EK=2,AE⊥QK,
∴根據(jù)兩點之間線段最短得出BM+MK的最小值是BQ,即BQ的長是HN+NM+MK的最小值,
∵BK∥AH,
∴∠BKQ=∠HEQ=90°,
由勾股定理得QB==8,
∴HN+NM+MK的最小值為8.
答:HN+NM+MK和的最小值是8.
故答案為:8.
點評:本題主要考查對勾股定理,解二元一次方程組,二次函數(shù)與一元二次方程,二次函數(shù)與X軸的交點,用待定系數(shù)法求二次函數(shù)的解析式等知識點的理解和掌握,綜合運用這些性質進行計算是解此題的關鍵,此題是一個綜合性比較強的題目,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案