【題目】服裝店準(zhǔn)備購(gòu)進(jìn)甲乙兩種服裝共100件,費(fèi)用不得超過7500元.甲種服裝每件進(jìn)價(jià)80元,每件售價(jià)120元;乙種服裝每件進(jìn)價(jià)60元,每件售價(jià)90元.
(Ⅰ)設(shè)購(gòu)進(jìn)甲種服裝件,試填寫下表.
表一
購(gòu)進(jìn)甲種服裝的數(shù)量/件 | 10 | 20 | … | |
購(gòu)進(jìn)甲種服裝所用費(fèi)用/元 | 800 | 1600 | … | |
購(gòu)進(jìn)乙種服裝所用費(fèi)用/元 | 5400 | … |
表二
購(gòu)進(jìn)甲種服裝的數(shù)量/件 | 10 | 20 | … | |
甲種服裝獲得的利潤(rùn)/元 | 800 | … | ||
乙種服裝獲得的利潤(rùn)/元 | 2700 | 2400 | … |
(Ⅱ)給出能夠獲得最大利潤(rùn)的進(jìn)貨方案,并說明理由.
【答案】(Ⅰ),4800,,400,,;(Ⅱ)購(gòu)進(jìn)甲種服裝75件,乙種服裝25件時(shí),可獲得最大利潤(rùn),理由見解析
【解析】
(1)甲服裝的件數(shù)乘以進(jìn)貨價(jià)即為購(gòu)進(jìn)甲種服裝所用費(fèi)用,乙的進(jìn)貨價(jià)乘以(100-甲的件數(shù))即為購(gòu)進(jìn)乙種服裝所用費(fèi)用;利潤(rùn)=(售價(jià)-進(jìn)貨價(jià))×件數(shù);
(2)設(shè)購(gòu)進(jìn)甲種服裝件,根據(jù)費(fèi)用不得超過7500元,求出x的范圍,然后求出利潤(rùn)關(guān)于x的函數(shù)關(guān)系式,再由函數(shù)的性質(zhì)求出最值即可.
(Ⅰ)表一
購(gòu)進(jìn)甲種服裝的數(shù)量/件 | 10 | 20 | … | |
購(gòu)進(jìn)甲種服裝所用費(fèi)用/元 | 800 | 1600 | … | |
購(gòu)進(jìn)乙種服裝所用費(fèi)用/元 | 5400 | 4800 | … |
表二
購(gòu)進(jìn)甲種服裝的數(shù)量/件 | 10 | 20 | … | |
甲種服裝獲得的利潤(rùn)/元 | 400 | 800 | … | |
乙種服裝獲得的利潤(rùn)/元 | 2700 | 2400 | … |
(Ⅱ)設(shè)購(gòu)進(jìn)甲種服裝件,由題意可知:
解得:.
購(gòu)進(jìn)甲種服裝件,總利潤(rùn)為元,,
,
∵,隨的增大而增大,
∴當(dāng)時(shí),有最大值,
則購(gòu)進(jìn)甲種服裝75件,乙種服裝25件時(shí),可獲得最大利潤(rùn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于下列說法,錯(cuò)誤的個(gè)數(shù)是( 。
①是分式;②當(dāng)x≠1時(shí),成立;③當(dāng)x=﹣3時(shí),分式的值是零;④a;⑤;⑥2﹣x.
A.6個(gè)B.5個(gè)C.4個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快、慢兩車分別從相距360km的佳市、哈市兩地出發(fā),勻速行駛,先相向而行,慢車在快車出發(fā)1h后出發(fā),到達(dá)佳市后停止行駛,快車到達(dá)哈市后,立即按原路原速返回佳市(快車調(diào)頭的時(shí)間忽略不計(jì)),快、慢兩車距哈市的路程y1(單位:km),y2(單位:km)與快車出發(fā)時(shí)間x(單位:h)之間的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象信息解答下列問題:
(1)直接寫出慢車的行駛速度和a的值;
(2)快車與慢車第一次相遇時(shí),距離佳市的路程是多少千米?
(3)快車出發(fā)多少小時(shí)后兩車相距為100km?請(qǐng)直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)為4,點(diǎn)是△的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段于兩點(diǎn),連接,給出下列四個(gè)結(jié)論:①;②;③四邊形的面積始終等于;④△周長(zhǎng)的最小值為6,上述結(jié)論中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司試銷一種成本為每件50元的恤衫.試銷中發(fā)現(xiàn),當(dāng)銷售單價(jià)是60元時(shí),售出400件;銷售單價(jià)每降低1元,多售出10件.設(shè)試銷中銷售單價(jià)(元)時(shí)的銷售量為(件).
(1)求與之間的函數(shù)關(guān)系式;
(2)設(shè)該公司獲得的總利潤(rùn)為元,求與之間的函數(shù)關(guān)系式;
(3)若要銷量不低于200件,且獲利至少5250元,則售價(jià)應(yīng)在何范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,CD為⊙O的切線,點(diǎn)C是切點(diǎn).
(1)如圖1,若AB為⊙O直徑,求四邊形ABCD各內(nèi)角的度數(shù);
(2)如圖2,若AB為弦,⊙O的半徑為3cm,當(dāng)BC=2cm時(shí),求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形紙片ABCD,AB=7,BC=4,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E、F,則EF=__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C處測(cè)得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以點(diǎn)O為圓心的圓分別交x軸的正半軸于點(diǎn)M,交y軸的正半軸于點(diǎn)N.劣弧的長(zhǎng)為,直線與x軸、y軸分別交于點(diǎn)A、B.
(1)求證:直線AB與⊙O相切;
(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com