如圖,矩形OABC的邊OA在x軸上,O與原點重合,OA=1,OC=2,點D的坐標為(2,0),則直線BD的函數(shù)表達式為( )

A.y=-x+2
B.y=-2x+4
C.y=-x+3
D.y=2x+4
【答案】分析:根據(jù)條件易得BC,AB的長,就可以求出B點的坐標,根據(jù)待定系數(shù)法就可以求出直線BD的函數(shù)的解析式.
解答:解:因為OA=1,OC=2,
所以BC=1,AB=2,
所以點B的坐標是(1,2),
又∵點D的坐標是(2,0),
設(shè)直線CBD的關(guān)系式為y=kx+b,
把B,D的坐標代入關(guān)系式,有,
解得
∴直線CD的函數(shù)關(guān)系式是y=-2x+4.
故選B.
點評:本題主要考查了待定系數(shù)法求函數(shù)解析式,注意數(shù)與形的結(jié)合是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點0、B的坐標分別是O(0,0)、B(8,4),頂點A在x軸上,頂點C在y軸上,把△OAB沿OB翻折,使點A落在點D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形OABC的邊OA、OC在坐標軸上,經(jīng)過點B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點,且CM=2OM,N為BC的中點,BM與AN交于點E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點F的坐標;
(2)求過A、F、C三點的拋物線解析式;
(3)在拋物線上是否存在一點P,使得△ACP為以A為直角頂點的直角三角形?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點坐標分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習冊答案