【題目】的度數(shù)是的度數(shù)的k倍,則規(guī)定k倍角.

1)若∠M=21°17',則∠M5倍角的度數(shù)為 ;

2)如圖1,OB是∠AOC的平分線,OD是∠COE的平分線,若∠AOC=COE,請(qǐng)直接寫出圖中∠AOB的所有3倍角;

3)如圖2,若∠AOC是∠AOB5倍角,∠COD是∠AOB3倍角,且∠AOC和∠BOD互為補(bǔ)角,求∠AOD的度數(shù).

【答案】1106°25';(2)∠AOD,∠BOE;(3120°.

【解析】

1)根據(jù)題意,列式計(jì)算即可得到答案;

2)由角平分線性質(zhì)定理,結(jié)合∠AOC=∠COE,得到∠AOB=∠BOC=COD=DOE,即可得到∠AOD=3AOB,∠BOE=3AOB;

3)設(shè)AOB=x,則∠AOC=5xBOC=4x,COD=3x,則利用∠AOC∠BOD互為補(bǔ)角的關(guān)系,列出方程,即可得到x的值,然后得到答案.

解:(1;

故答案為: .

2)∵OB∠AOC的平分線,OD∠COE的平分線,∠AOC=∠COE,

∠AOB=∠BOC=COD=DOE,

∴∠AOD=3AOB,∠BOE=3AOB;

∴圖中∠AOB的所有3倍角有:∠AOD,∠BOE;

3)設(shè)∠AOB=x,則∠AOC=5x∠COD=3x.

∠BOC=4x,

∠AOC∠BOD互為補(bǔ)角,

∠AOC+∠BOD=AOC+BOC+COD=180°,

5x+7x=180°

解得:x=15°.

∠AOD=8x=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘貨輪位于O地,發(fā)現(xiàn)燈塔A在它的正北方向上,這艘貨輪沿正東方向航行50千米,到達(dá)B地,此時(shí)用雷達(dá)測(cè)得燈塔A與貨輪的距離為100千米.

(1)在圖中作出燈塔A的位置,并作射線BA

(2)以正北,正南方向?yàn)榛鶞?zhǔn),借助量角器,描述燈塔AB地的什么方向上(精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段,點(diǎn)是線段的中點(diǎn),先按要求畫圖形,再解決問(wèn)題.

1)延長(zhǎng)線段至點(diǎn),使;延長(zhǎng)線段至點(diǎn),使;(尺規(guī)作圖,保留作圖痕跡)

2)求線段的長(zhǎng)度;

3)若點(diǎn)是線段的中點(diǎn),求線段的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺(tái)進(jìn)價(jià)分別為2000元、1700元的A、B兩種型號(hào)的凈水器,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

18000

第二周

4臺(tái)

10臺(tái)

31000

(1)求A,B兩種型號(hào)的凈水器的銷售單價(jià);

(2)若電器公司準(zhǔn)備用不多于54000元的金額在采購(gòu)這兩種型號(hào)的凈水器共30臺(tái),求A種型號(hào)的凈水器最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,公司銷售完這30臺(tái)凈水器能否實(shí)現(xiàn)利潤(rùn)為12800元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的漢字聽(tīng)寫大賽.各參賽選手成績(jī)的數(shù)據(jù)分析如下表所示,則以下判斷錯(cuò)誤的是( 。

A. 八(2)班的總分高于八(1)班 B. 八(2)班的成績(jī)比八(1)班穩(wěn)定

C. 八(2)班的成績(jī)集中在中上游 D. 兩個(gè)班的最高分在八(2)班

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,直線l1:x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線l2:x軸交于點(diǎn)C,與直線l1交于點(diǎn)P

1)當(dāng)k=1時(shí),求點(diǎn)P的坐標(biāo);

2)如圖1,點(diǎn)DPA的中點(diǎn),過(guò)點(diǎn)DDE⊥x軸于E,交直線l2于點(diǎn)F,若DF=2DE,求k的值;

3)如圖2,點(diǎn)P在第二象限內(nèi),PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ的延長(zhǎng)線交直線l1于點(diǎn)R,若PR=PC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某周日上午8:00小宇從家出發(fā),乘車1小時(shí)到達(dá)某活動(dòng)中心參加實(shí)踐活動(dòng).11:00時(shí)他在活動(dòng)中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來(lái)活動(dòng)中心時(shí)的路線,以5千米/小時(shí)的平均速度快步返回.同時(shí),爸爸從家沿同一路線開(kāi)車接他,在距家20千米處接上了小宇,立即保持原來(lái)的車速原路返回.設(shè)小宇離家x(小時(shí))后,到達(dá)離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.

(1)活動(dòng)中心與小宇家相距 千米,小宇在活動(dòng)中心活動(dòng)時(shí)間為 小時(shí),他從活動(dòng)中心返家時(shí),步行用了 小時(shí);

(2)求線段BC所表示的y(千米)與x(小時(shí))之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);

(3)根據(jù)上述情況(不考慮其他因素),請(qǐng)判斷小宇是否能在12:00前回到家,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把四張大小相同的長(zhǎng)方形卡片(如圖)按圖、圖兩種放法放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為,寬為)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖中陰影部分的周長(zhǎng)為,圖中陰影部分的周長(zhǎng)為,則___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案