【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.
(1)求證:∠1=∠2;
(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形三邊的長a、b、c滿足 =b,那么我們就把這樣的三角形叫做“勻稱三角形”,如:三邊長分別為1,1,1或3,5,7,…的三角形都是“勻稱三角形”.
(1)如圖1,已知兩條線段的長分別為a、c(a<c).用直尺和圓規(guī)作一個最短邊、最長邊的長分別為a、c的“勻稱三角形”(不寫作法,保留作圖痕跡);
(2)如圖2,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作⊙O的切線交AB延長線于點E,交AC于點F,若 ,判斷△AEF是否為“勻稱三角形”?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個二次函數(shù)y1=x2+bx+c和y2=x2+m.對于函數(shù)y1 , 當(dāng)x=2時,該函數(shù)取最小值.
(1)求b的值;
(2)若函數(shù)y1的圖象與坐標(biāo)軸只有2個不同的公共點,求這兩個公共點間的距離;
(3)若函數(shù)y1、y2的圖象都經(jīng)過點(1,﹣2),過點(0,a﹣3)(a為實數(shù))作x軸的平行線,與函數(shù)y1、y2的圖象共有4個不同的交點,這4個交點的橫坐標(biāo)分別是x1、x2、x3、x4 , 且x1<x2<x3<x4 , 求x4﹣x3+x2﹣x1的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民晚飯后1小時內(nèi)的生活方式,調(diào)查小組設(shè)計了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項,用隨機抽樣的方法調(diào)查了該市部分市民,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計圖.
根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次共調(diào)查了名市民;
(2)補全條形統(tǒng)計圖;
(3)該市共有480萬市民,估計該市市民晚飯后1小時內(nèi)鍛煉的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點P在射線BC上(異于點B、C),直線AP與對角線BD及射線DC分別交于點F、Q
(1)若BP= ,求∠BAP的度數(shù);
(2)若點P在線段BC上,過點F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時,求PC的長;
(3)以PQ為直徑作⊙M. ①判斷FC和⊙M的位置關(guān)系,并說明理由;
②當(dāng)直線BD與⊙M相切時,直接寫出PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】六一兒童節(jié),小文到公園游玩.看到公園的一段人行彎道MN(不計寬度),如圖,它與兩面互相垂直的圍墻OP、OQ之間有一塊空地MPOQN(MP⊥OP,NQ⊥OQ),他發(fā)現(xiàn)彎道MN上任一點到兩邊圍墻的垂線段與圍墻所圍成的矩形的面積都相等,比如:A、B、C是彎道MN上的三點,矩形ADOG、矩形BEOH、矩形CFOI的面積相等.愛好數(shù)學(xué)的他建立了平面直角坐標(biāo)系(如圖),圖中三塊陰影部分的面積分別記為S1、S2、S3 , 并測得S2=6(單位:平方米).OG=GH=HI.
(1)求S1和S3的值;
(2)設(shè)T(x,y)是彎道MN上的任一點,寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)公園準(zhǔn)備對區(qū)域MPOQN內(nèi)部進(jìn)行綠化改造,在橫坐標(biāo)、縱坐標(biāo)都是偶數(shù)的點處種植花木(區(qū)域邊界上的點除外),已知MP=2米,NQ=3米.問一共能種植多少棵花木?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a1 , a2 , …,a2014是從1,0,﹣1這三個數(shù)中取值的一列數(shù),若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,則a1 , a2 , …,a2014中為0的個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點O作一條直線分別交DA、BC的延長線于點E、F,連接BE、DF.
(1)求證:四邊形BFDE是平行四邊形;
(2)若EF⊥AB,垂足為M,tan∠MBO= ,求EM:MF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,點A、B分別在函數(shù)y1= (x>0)與y2=﹣ (x<0)的圖象上,A、B的橫坐標(biāo)分別為
a、b.
(1)若AB∥x軸,求△OAB的面積;
(2)若△OAB是以AB為底邊的等腰三角形,且a+b≠0,求ab的值;
(3)作邊長為3的正方形ACDE,使AC∥x軸,點D在點A的左上方,那么,對大于或等于4的任意實數(shù)a,CD邊與函數(shù)y1= (x>0)的圖象都有交點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com