【題目】如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ANMB和正方形ACDE,NC、BE交于點P.
探究:試判斷BE和CN的位置關(guān)系和數(shù)量關(guān)系,并說明理由.
應(yīng)用:Q是線段BC的中點,若BC=6,則PQ= .
【答案】見解析
【解析】試題分析:根據(jù)正方形性質(zhì)得出AN=AB,AC=AE,∠NAB=∠CAE=90°,求出∠NAC=∠BAE,證出△ANC≌△ABE即可.
試題解析:解:CN=BE,BE⊥NC.理由如下:
∵四邊形ANMB和四邊形ACDE都是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∴∠NAB+∠BAC=∠CAE+∠BAC,∴∠NAC=∠BAE.
在△ANC和△ABE中,∵,∴△ANC≌△ABE(SAS),∴CN=BE.
設(shè)CN交AB于H,交BE于P.∵△ANC≌△ABE,∴∠ABE=∠ANC.∵∠PHB=∠AHN,∴∠HPB=∠HAP=90°,∴BE⊥NC.∵四邊形NABM是正方形,∴∠NAB=90°,∴∠ANC+∠AON=90°.∵∠BHP=∠AHN,∠ANC=∠ABE,∴∠ABP+∠BHP=90°,∴∠BPC=∠ABP+∠BHP=90°.∵Q為BC中點,BC=6,∴PQ=BC=3.故答案為:3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某林場要考察一種幼樹在一定條件下的移植成活率,在移植過程中的統(tǒng)計結(jié)果如下表所示:
移植的幼樹n/棵 | 500 | 1000 | 2000 | 4000 | 7000 | 10000 | 12000 | 15000 |
成活的幼樹m/棵 | 423 | 868 | 1714 | 3456 | 6020 | 8580 | 10308 | 12915 |
成活的頻率 | 0.846 | 0.868 | 0.857 | 0.864 | 0.860 | 0.858 | 0.859 | 0.861 |
在此條件下,估計該種幼樹移植成活的概率為_________________(精確到);若該林場欲使成活的幼樹達到4.3萬棵,則估計需要移植該種幼樹_________萬棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點C落在C/處,BC/交AD于E,AD=8,AB=4,DE的長=________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)類比計算
①6×12=1×2×3;
②6×22=2×3×5﹣1×2×3;
③6×32=3×4×7﹣2×3×5;
④6×42=4×5×9﹣3×4×7;
⑤ ;
(2)規(guī)律提煉
寫出第n個式子(用含字母n的式子表示).
(3)問題解決
求12+22+33+42+…+592+602的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):x1,x2,x3,x4,x5,x6的平均數(shù)是2,方差是3,則另一組數(shù)據(jù):3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均數(shù)和方差分別是( 。
A. 2,3 B. 2,9 C. 4,25 D. 4,27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長.
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識進行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點睛:直徑所對的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 A、B 在數(shù)軸上表示的數(shù)分別為﹣12 和 8,兩只螞蟻 M、N 分別 從 A、B 兩點同時出發(fā),相向而行.M 的速度為 2 個單位長度/秒,N 的速度為 3 個單位長度/秒.
(1)運動 秒鐘時,兩只螞蟻相遇在點 P;點 P 在數(shù)軸上表示的數(shù) 是 ;
(2)若運動 t 秒鐘時,兩只螞蟻的距離為 10,求出 t 的值(寫出解題過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個點從數(shù)軸上的原點開始,先向右移動2個單位長度,再向左移動5個單位長度,可以看到終點表示是-3,已知A、B是數(shù)軸上的點,請參照下圖并思考,完成下列各題.
(1)如果點A表示的數(shù)-1,將點A向右移動4個單位長度,那么終點B表示的數(shù)是____.A、B兩點間的距離是__________.
(2)如果點A表示的數(shù)2,將點A向左移動6個單位長度,再向右移動3個單位長度,那么終點B表示的數(shù)是____.A、B兩點間的距離是____.
(3)如果點A表示的數(shù)m,將點A向左移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示的數(shù)是___.A、B兩點間的距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上有A、B、C、D四個點,分別對應(yīng)的數(shù)為a,b,c,d,且滿足a,b到點 -7的距離為1 (a<b),且(c﹣12)2與|d﹣16|互為相反數(shù).
(1)填空:a= 、b= 、c= 、d= ;
(2)若線段AB以3個單位/秒的速度向右勻速運動,同時線段CD以1單位長度/秒向左勻速運動,并設(shè)運動時間為t秒,A、B兩點都運動在CD上(不與C,D兩個端點重合),若BD=2AC,求t得值;
(3)在(2)的條件下,線段AB,線段CD繼續(xù)運動,當(dāng)點B運動到點D的右側(cè)時,問是否存在時間t,使BC=3AD?若存在,求t得值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com