【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PE⊥BC于點E,過點E作EF∥AC,交AB于點F.設PC=x,PE=y.
(1)求y與x的函數(shù)關系式;
(2)是否存在點P使△PEF是Rt△?若存在,求此時的x的值;若不存在,請說明理由.
【答案】(1)(0<x<20);(2)當x=10或x=16,存在點P使△PEF是Rt△.
【解析】
試題分析:(1)在Rt△ABC中,根據(jù)三角函數(shù)可求y與x的函數(shù)關系式;
(2)分三種情況:①如圖1,當∠FPE=90°時,②如圖2,當∠PFE=90°時,③當∠PEF=90°時,進行討論可求x的值.
試題解析:(1)在Rt△ABC中,∠B=90°,AC=20,AB=10,∴sinC=,∵PE⊥BC于點E,∴sinC==,∵PC=x,PE=y,∴(0<x<20);
(2)存在點P使△PEF是Rt△,①如圖1,當∠FPE=90°時,四邊形PEBF是矩形,BF=PE=x,四邊形APEF是平行四邊形,PE=AF=x,∵BF+AF=AB=10,∴x=10;
②如圖2,當∠PFE=90°時,Rt△APF∽Rt△ABC,∠ARP=∠C=30°,AF=40﹣2x,平行四邊形AFEP中,AF=PE,即:40﹣2x=x,解得x=16;
③當∠PEF=90°時,此時不存在符合條件的Rt△PEF.
綜上所述,當x=10或x=16,存在點P使△PEF是Rt△.
科目:初中數(shù)學 來源: 題型:
【題目】某校有25名同學參加某比賽,預賽成績各不相同,取前13名參加決賽,其中一名同學已經(jīng)知道自己的成績,能否進入決賽,只需要再知道這25名同學成績的( )
A.最高分
B.平均數(shù)
C.中位數(shù)
D.方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯(lián)結CE,求:
(1)線段BE的長;
(2)∠ECB的余切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知平行四邊形ABCD的頂點A在第三象限,對角線AC的中點在坐標原點,一邊AB與x軸平行且AB=2,若點A的坐標為(a,b),則點D的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,線段BE上有一點C,以BC,CE為邊分別在BE的同側(cè)作等邊三角形ABC,DCE,連接AE,BD,分別交CD,CA于Q,P.
(1)找出圖中的所有全等三角形.
(2)找出一組相等的線段,并說明理由.
(3)如圖2,取AE的中點M、BD的中點N,連接MN,試判斷三角形CMN的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,屬于必然事件的是( )
A. 隨時打開電視機,正在播新聞
B. 優(yōu)秀射擊運動員射擊一次,命中靶心
C. 拋擲一枚質(zhì)地均勻的骰子,出現(xiàn)4點朝上
D. 長度分別是3cm,5cm,6cm的三根木條首尾相接,組成一個三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市“單獨兩孩”政策開始實施,該政策的實施可能給我們的生活帶來一些變化,人口計生部門抽樣調(diào)查了部分市民(每個參與調(diào)查的市民必須且只能在以下6種變化中選擇一項),并將調(diào)查結果繪制成繞計圖.
種類 | A | B | C | D | E | F |
變化 | 有利于延緩社會老齡化現(xiàn)象 | 導致人口暴增 | 提升家庭抗風險能力 | 增大社會基本公共服務壓力 | 緩解男女比例不平衡的現(xiàn)象 | 促進人口與社會、資源、環(huán)境的協(xié)調(diào)可持續(xù)發(fā)展 |
(1)參與調(diào)查的市民一共有人;
(2)參與調(diào)查的市民中選擇C的人數(shù)是人;
(3)∠α=;
(4)請補全條形統(tǒng)計圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com