如圖,△ABC為等邊三角形,D為△ABC內(nèi)一點(diǎn),△ABD逆時針旋轉(zhuǎn)后到達(dá)△ACP位置,則∠APD=
60°
60°
分析:根據(jù)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離AD與AP相等,可證△ADP為等邊三角形,進(jìn)而得出答案.
解答:解:根據(jù)題意分析可得:
∵將△ABD經(jīng)過一次逆時針旋轉(zhuǎn)后到△ACP的位置,
∴∠BAD=∠CAP,
∵∠BAC=∠BAD+∠DAC=60°,
∴∠PAC+∠CAD=60°
∴∠DAP=60°;
故旋轉(zhuǎn)角度60度.
根據(jù)旋轉(zhuǎn)的性質(zhì);可得AD=AP,且∠DAP=60°;故△ADP為等邊三角形,
∴∠APD=60°.
故答案為:60°.
點(diǎn)評:本題考查了等邊三角形的判定以及旋轉(zhuǎn)的性質(zhì):變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變,兩組對應(yīng)點(diǎn)連線的交點(diǎn)是旋轉(zhuǎn)中心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,△ABC為等邊三角形,P為三角形內(nèi)一點(diǎn),將△ABP繞A點(diǎn)逆時針旋轉(zhuǎn)60°后與△ACP′重合,若AP=3,則PP′=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC為等邊三角形,D、F分別為BC、AB上的點(diǎn),且CD=BF,以AD為邊作等邊△ADE.
(1)求證:△ACD≌△CBF;
(2)點(diǎn)D在線段BC上何處時,四邊形CDEF是平行四邊形且∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥AD與Q,PQ=4,PE=1
(1)求證∠BPQ=60°
(2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,D、F分別為CB、BA上的點(diǎn),且CD=BF,以AD為一邊作等邊三角形ADE.
①△ACD與△CBF是全等三角形嗎?說說你的理由.
②ED=FC嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊△,EC=ED,∠CED=120゜,P為BD的中點(diǎn),求證:AE=2PE.

查看答案和解析>>

同步練習(xí)冊答案