【題目】已知:如圖,在半徑為2的扇形中,°,點(diǎn)C在半徑OB上,AC的垂直平分線交OA于點(diǎn)D,交弧AB于點(diǎn)E,聯(lián)結(jié).
(1)若C是半徑OB中點(diǎn),求的正弦值;
(2)若E是弧AB的中點(diǎn),求證:;
(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時(shí),求CD的長(zhǎng).
【答案】(1);(2)詳見解析;(2)當(dāng)是以CD為腰的等腰三角形時(shí),CD的長(zhǎng)為2或.
【解析】
(1)先求出OCOB=1,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=1求出x,即可得出結(jié)論;
(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;
(3)分兩種情況:①當(dāng)CD=CE時(shí),判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
②當(dāng)CD=DE時(shí),判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點(diǎn)D和點(diǎn)O重合,即可得出結(jié)論.
(1)∵C是半徑OB中點(diǎn),∴OCOB=1.
∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.
在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=1,∴x,∴CD,∴sin∠OCD;
(2)如圖1,連接AE,CE.
∵DE是AC垂直平分線,∴AE=CE.
∵E是弧AB的中點(diǎn),∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.
連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BOBC;
(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:
①當(dāng)CD=CE時(shí).
∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長(zhǎng)為a,∴OD=OA﹣AD=2﹣a.在
②當(dāng)CD=DE時(shí).
∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點(diǎn)D和點(diǎn)O重合,此時(shí),點(diǎn)C和點(diǎn)B重合,∴CD=2.
綜上所述:當(dāng)△DCE是以CD為腰的等腰三角形時(shí),CD的長(zhǎng)為2或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段AB=9,點(diǎn)C為線段AB上一點(diǎn),AC=3,點(diǎn)D為平面內(nèi)一動(dòng)點(diǎn),且滿足CD=3,連接BD將BD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90到DE,連接BE、AE,則AE的最大值為 ________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,梯形中,,,∥,,,點(diǎn)在邊上,以點(diǎn)為圓心為半徑作弧交邊于點(diǎn),射線與射線交于點(diǎn).
(1)若,求的長(zhǎng);
(2)聯(lián)結(jié),若,求的長(zhǎng);
(3)線段上是否存在點(diǎn),使得△與△相似,若相似,求的值,若不相似,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形,,,…按如圖所示的方式放置.點(diǎn),,…和點(diǎn),,,…分別在直線()和軸上,已知點(diǎn)(1,1),(3,2),則的坐標(biāo)是_____,的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點(diǎn)D,E是BD的中點(diǎn),聯(lián)結(jié)AE并延長(zhǎng),交邊BC于點(diǎn)F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,AC為對(duì)角線,E是邊AD上一點(diǎn),BE⊥AC交AC于點(diǎn)F,BE、CD的延長(zhǎng)線交于點(diǎn)G,且∠ABE=∠CAD.
(1)求證:四邊形ABCD是矩形;
(2)如果AE=EG,求證:AC2=BCBG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與x軸、y軸分別交于A、B兩點(diǎn),設(shè)O為坐標(biāo)原點(diǎn).
(1)求∠ABO的正切值;
(2)如果點(diǎn)A向左平移12個(gè)單位到點(diǎn)C,直線l過(guò)點(diǎn)C且與直線平行,求直線l的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:以O為圓心的扇形AOB中,∠AOB=90°,點(diǎn)C為上一動(dòng)點(diǎn),射線AC交射線OB于點(diǎn)D,過(guò)點(diǎn)D作OD的垂線交射線OC于點(diǎn)E,聯(lián)結(jié)AE.
(1)如圖1,當(dāng)四邊形AODE為矩形時(shí),求∠ADO的度數(shù);
(2)當(dāng)扇形的半徑長(zhǎng)為5,且AC=6時(shí),求線段DE的長(zhǎng);
(3)聯(lián)結(jié)BC,試問(wèn):在點(diǎn)C運(yùn)動(dòng)的過(guò)程中,∠BCD的大小是否確定?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,弦,相交于點(diǎn),且于點(diǎn),過(guò)點(diǎn)作的切線交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)若的半徑為5,點(diǎn)是的中點(diǎn),,寫出求線段長(zhǎng)的思路.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com