【題目】為了進一步了解義務教育階段學生的體質健康狀況,教育部對我市某中學九年級的部分學生進行了體質抽測,體質抽測的結果分為四個等級:優(yōu)秀、良好、合格、不合格,根據(jù)調查結果繪制了下列兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息回答以下問題:
(1)在扇形統(tǒng)計圖中,“合格”的百分比為 ;
(2)本次體質抽測中,抽測結果為“不合格”等級的學生有 人
(3)若該校九年級有400名學生,估計該校九年級體質為“不合格”等級的學生約有 人.
【答案】
(1)40%
(2)16
(3)128
【解析】解:(1)“合格”的百分比為1﹣12%﹣16%﹣32%=40%,故答案是:40%;
(2)抽測的總人數(shù)是:8÷16%=50(人),
則抽測結果為“不合格”等級的學生有:50×32%=16(人).
故答案是:16;
(3)該校九年級體質為“不合格”等級的學生約有400×32%=128(人).
故答案是:128.
【考點精析】本題主要考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的相關知識點,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+mx+n的圖象經過點P(﹣3,1),對稱軸是經過(﹣1,0)且平行于y軸的直線.
(1)求m、n的值
(2)如圖,一次函數(shù)y=kx+b的圖象經過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側,PA:PB=1:5,求一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l上有一點P1(2,1),將點P1先向右平移1個單位,再向上平移2個單位得到像點P2 , 點P2恰好在直線l上.
(1)寫出點P2的坐標;
(2)求直線l所表示的一次函數(shù)的表達式;
(3)若將點P2先向右平移3個單位,再向上平移6個單位得到像點P3 . 請判斷點P3是否在直線l上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A,交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF,BF,DF.
(1)求證:△ABC≌△ABF;
(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=1,AB=2
(1)求作⊙O,使它過點A、B、C(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)所作的圓中,求出劣弧的長l
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點M在y軸上的拋物線與直線y=x+1相交于A、B兩點,且點A在x軸上,點B的橫坐標為2,連結AM、BM.
(1)求拋物線的函數(shù)關系式;
(2)判斷△ABM的形狀,并說明理由
(3)把拋物線與直線y=x的交點稱為拋物線的不動點.若將(1)中拋物線平移,使其頂點為(m,2m),當m滿足什么條件時,平移后的拋物線總有不動點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2015年1月,市教育局在全市中小學中選取了63所學校從學生的思想品德、學業(yè)水平、學業(yè)負擔、身心發(fā)展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學七年級全體學生中隨機抽取了若干名學生進行問卷調查,了解他們每天在課外用于學習的時間,并繪制成如下不完整的統(tǒng)計圖.
根據(jù)上述信息,解答下列問題:
(1)本次抽取的學生人數(shù)是 ;扇形統(tǒng)計圖中的圓心角α等于 ;補全統(tǒng)計直方圖;
(2)被抽取的學生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點A為圓心,以AD的長為半徑畫弧交邊BC于點E,連接AE;
②作∠DAE的平分線交CD于點F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com