精英家教網(wǎng)如圖所示,在?ABCD中,AB=2AD,∠A=60°,E,F(xiàn)分別為AB,CD的中點,EF=1cm,那么對角線BD的長度為
 
cm.
分析:先連接DE構(gòu)造平行四邊形,再利用平行四邊形及等邊三角形的性質(zhì)解答.
解答:精英家教網(wǎng)解:連接DE.
∵四邊形ABCD是平行四邊形,
∴AB平行且等于CD.
∵DF=
1
2
CD,AE=
1
2
AB,
∴DF平行且等于AE.
∴四邊形ADFE是平行四邊形.
∴EF=AD=1cm,
∴AB=2cm,AB=2AE,
∴AD=AE.
∴∠1=∠4.
∵∠A=60°,∠1+∠4+∠A=180°,
∴∠1=∠A=∠4=60°.
∴△ADE是等邊三角形,
∴DE=AE.
∵AE=BE,
∴DE=BE,
∴∠2=∠3.
∵∠1=∠2+∠3,∠1=60°,
∴∠2=∠3=30°.
∴∠ADB=∠3+∠4=90°
∴BD=
AB2-AD2
=
22-12
=
3
(cm).
故答案為
3
點評:本題比較復(fù)雜,綜合性較強,解答此題的關(guān)鍵是構(gòu)造平行四邊形,用平行四邊形及等邊三角形的性質(zhì),直角三角形的性質(zhì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊答案