【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DF
(1)求∠CDE的度數(shù)
(2)求證:DF是⊙O的切線
【答案】證明見(jiàn)解析
【解析】試題分析:(1)直接利用圓周角定理得出∠CDE的度數(shù);
(2)直接利用直角三角形的性質(zhì)結(jié)合等腰三角形的性質(zhì)得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,進(jìn)而得出答案.
試題解析:(1)∵對(duì)角線AC為⊙O的直徑,
∴∠ADC=90°,
∴∠EDC=90°;
(2)連接DO,
∵∠EDC=90°,F是EC的中點(diǎn),∴DF=FC,
∴∠FDC=∠FCD,
∵OD=OC ,∴∠OCD=∠ODC,
∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
∴DF是⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸相交于點(diǎn)A(-2,0)、B(4,0),與y軸交于點(diǎn)C(0,-4),BC與拋物線的對(duì)稱軸相交于點(diǎn)D.
(1)求該拋物線的表達(dá)式,并直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)過(guò)點(diǎn)A作AE⊥AC交拋物線于點(diǎn)E,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,點(diǎn)F在射線AE上,若△ADF∽△ABC,求點(diǎn)F 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知四邊形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD為銳角.
(1)求證:AD⊥BF;
(2)若BF=BC,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的對(duì)角線所成的角之一是65°,則對(duì)角線與各邊所成的角度是( 。
A. 57.5° B. 32.5° C. 57.5°,23.5° D. 57.5°,32.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD、AE分別是∠BAC與∠BAC的外角的平分線,BE⊥AE.求證:AB=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為邊BC的中點(diǎn),點(diǎn)E在△ABC內(nèi),AE平分∠BAC,CE⊥AE點(diǎn)F在AB上,且BF=DE
(1)求證:四邊形BDEF是平行四邊形
(2)線段AB,BF,AC之間具有怎樣的數(shù)量關(guān)系?證明你所得到的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解放中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)四類電視節(jié)目的喜愛(ài)程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問(wèn)題.
(1)喜愛(ài)動(dòng)畫(huà)的學(xué)生人數(shù)和所占比例分別是多少?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高為DE,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A在原點(diǎn)O的左邊,表示的數(shù)為﹣10,點(diǎn)B在原點(diǎn)的右邊,且BO=3AO.點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā)向右運(yùn)動(dòng).點(diǎn)N以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向右運(yùn)動(dòng)(點(diǎn)M,點(diǎn)N同時(shí)出發(fā)).
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是 ,點(diǎn)B到點(diǎn)A的距離是 ;
(2)經(jīng)過(guò)幾秒,原點(diǎn)O是線段MN的中點(diǎn)?
(3)經(jīng)過(guò)幾秒,點(diǎn)M,N分別到點(diǎn)B的距離相等?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com