【題目】課堂上,老師給出一道題:如圖,將拋物線(xiàn)C:y=x2﹣6x+5在x軸下方的圖象沿x軸翻折,翻折后得到的圖象與拋物線(xiàn)C在x軸上方的圖象記為G,已知直線(xiàn)l:y=x+m與圖象G有兩個(gè)公共點(diǎn),求m的取值范圍甲同學(xué)的結(jié)果是﹣5<m<﹣1,乙同學(xué)的結(jié)果是m>.下列說(shuō)法正確的是( 。
A.甲的結(jié)果正確
B.乙的結(jié)果正確
C.甲、乙的結(jié)果合在一起才正確
D.甲、乙的結(jié)果合在一起也不正確
【答案】D
【解析】
當(dāng)直線(xiàn)過(guò)拋物線(xiàn)與x軸右側(cè)的交點(diǎn)時(shí),恰有一個(gè)交點(diǎn);
直線(xiàn)y=x+m向上移,經(jīng)過(guò)g左側(cè)交點(diǎn)之前均為兩個(gè)交點(diǎn);
繼續(xù)向上平移,直到經(jīng)過(guò)G中間的頂點(diǎn)(3,4)之前均為三個(gè)交點(diǎn);
最終向上平移,均有兩個(gè)交點(diǎn).
解:令y=x2﹣6x+5=0,解得(1,0),(5,0)
將點(diǎn)(1,0),(5,0)分別代入直線(xiàn)y=x+m,得m=﹣1,﹣5;
∴﹣5<m<﹣1
由題可知,圖象G中的頂點(diǎn)為(3,4)
代入直線(xiàn)y=x+m,得m=1,
∴m>1
綜上所述,m>1或﹣5<m<﹣1
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,山坡上有一棵樹(shù)AB,樹(shù)底部B點(diǎn)到山腳C點(diǎn)的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測(cè)量這棵樹(shù)的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得樹(shù)頂部A的仰角為45°,樹(shù)底部B的仰角為20°,求樹(shù)AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)
(1)若求該拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo);
(2)若,是否存在實(shí)數(shù),使得相應(yīng)的y=1,若有,請(qǐng)指明有幾個(gè)并證明你的結(jié)論,若沒(méi)有,闡述理由。
(3)若且拋物線(xiàn)在區(qū)間上的最小值是-3,求b的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖拋物線(xiàn)y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)D是線(xiàn)段AC下方拋物線(xiàn)上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線(xiàn)上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形ABCD是矩形,AB=2,BC=4,點(diǎn)E是線(xiàn)段AD上一動(dòng)點(diǎn)(不與A,D重合),點(diǎn)F是線(xiàn)段AB延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),連接CE,EF,EF交BC于點(diǎn)G,設(shè)AE=x,AF=y,已知y與x之間的函數(shù)關(guān)系如圖②所示.
(1)求圖②中y與x的函數(shù)表達(dá)式;
(2)求證:CE⊥CF;
(3)是否存在x的值,使得△CEG是等腰三角形?如果存在,求出x的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,BD為⊙O的直徑,且BD=8,是圓周的,A為上任意一點(diǎn),取AC=AB,交BD的延長(zhǎng)線(xiàn)于C,連結(jié)OA,并作AE⊥BD于E,設(shè)AB=x,CD=y.
(1)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),CA是⊙O的切線(xiàn)?
(3)當(dāng)CA與⊙O相切時(shí),求tan∠OAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在小正方形的邊長(zhǎng)均為1的8×8方格紙中,有線(xiàn)段AB和線(xiàn)段CD.點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫(huà)出以AB為斜邊的直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上,且△ABE的面積為5;
(2)在方格紙中畫(huà)出以CD為一邊的△CDF.點(diǎn)F在小正方形的頂點(diǎn)上,△CDF的面積為4,CF與(1)中畫(huà)的線(xiàn)段AE所在直線(xiàn)垂直,連接EF,請(qǐng)直接寫(xiě)出線(xiàn)段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)分別為A(0,1),B(-1,0),C(0,-1),D(1,0).對(duì)于圖形M,給出如下定義:P為圖形M上任意一點(diǎn),Q為正方形ABCD邊上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最大值,那么稱(chēng)這個(gè)最大值為圖形M的“正方距”,記作.
(1)已知點(diǎn),
①直接寫(xiě)出的值;
②直線(xiàn)與x軸交于點(diǎn)F,當(dāng)取最小值時(shí),求k的取值范圍;
(2)的圓心為 ,半徑為1.若,直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)G,CE的延長(zhǎng)線(xiàn)交DA的延長(zhǎng)線(xiàn)于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線(xiàn)段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com