在△ABC中,,設(shè)c為最長邊.當(dāng)時(shí),△ABC是直角三角形;當(dāng)時(shí),利用代數(shù)式的大小關(guān)系,可以判斷△ABC的形狀(按角分類).
(1)請你通過畫圖探究并判斷:當(dāng)△ABC三邊長分別為6,8,9時(shí),△ABC為____三角形;當(dāng)△ABC三邊長分別為6,8,11時(shí),△ABC為______三角形.
(2)小明同學(xué)根據(jù)上述探究,有下面的猜想:“當(dāng)時(shí),△ABC為銳角三角形;當(dāng)時(shí),△ABC為鈍角三角形.” 請你根據(jù)小明的猜想完成下面的問題:
當(dāng),時(shí),最長邊c在什么范圍內(nèi)取值時(shí),△ABC是直角三角形、銳角三角形、鈍角三角形?
(1)銳角,鈍角;(2)當(dāng)4≤c<時(shí),這個(gè)三角形是銳角三角形;當(dāng)c=時(shí),這個(gè)三角形是直角三角形;當(dāng)<c<6時(shí),這個(gè)三角形是鈍角三角形.

試題分析:(1)利用勾股定理列式求出兩直角邊為6、8時(shí)的斜邊的值,然后作出判斷即可.
(2)根據(jù)三角形的任意兩邊之和大于第三邊求出最長邊c點(diǎn)的最大值,然后得到c的取值范圍,然后分情況討論即可得解.
試題解析:(1)∵兩直角邊分別為6、8時(shí),斜邊=,
∴△ABC三邊分別為6、8、9時(shí),△ABC為銳角三角形;
當(dāng)△ABC三邊分別為6、8、11時(shí),△ABC為鈍角三角形.

(2)∵c為最長邊,2+4=6,
∴4≤c<6,,
,即c2<20,0<c<,
∴當(dāng)4≤c<時(shí),這個(gè)三角形是銳角三角形;
,即c2=20,c=,
∴當(dāng)c=時(shí),這個(gè)三角形是直角三角形;
,即c2>20,c>,
∴當(dāng)<c<6時(shí),這個(gè)三角形是鈍角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將矩形ABCD沿BD對折,點(diǎn)A落在E處,BE與CD相交于F,若AD=3,BD=6.
(1)求證:△EDF≌△CBF;
(2)求∠EBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)在線段上,,.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=AC,將線段AC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到線段CD,旋轉(zhuǎn)角為,且,連接AD、BD.
(1)如圖1,當(dāng)∠BAC=100°,時(shí),∠CBD 的大小為_________;
(2)如圖2,當(dāng)∠BAC=100°,時(shí),求∠CBD的大;
(3)已知∠BAC的大小為m(),若∠CBD 的大小與(2)中的結(jié)果相同,請直接寫出的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠ACB=90°,CD是AB邊上的中線,若CD=3,則AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)C、F在BE上,BF=CE,AB=DE,∠B=∠E。求證:∠ACE=∠DFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若一個(gè)多邊形的內(nèi)角和為1080°,則這個(gè)多邊形的邊數(shù)是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

等邊△ABC的邊長為2,P是BC邊上的任一點(diǎn)(與B、C不重合),連接AP,以AP為邊向兩側(cè)作等邊△APD和等邊△APE,分別與邊AB、AC交于點(diǎn)M、N(如圖1)。
(1)求證:AM=AN;
(2)設(shè)BP=x。
①若,BM=,求x的值;
②記四邊形ADPE與△ABC重疊部分的面積為S,求S與x之間的函數(shù)關(guān)系式以及S的最小值;
③連接DE,分別與邊AB、AC交于點(diǎn)G、H(如圖2),當(dāng)x取何值時(shí),∠BAD=150?并判斷此時(shí)以DG、GH、HE這三條線段為邊構(gòu)成的三角形是什么特殊三角形,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若如圖所示的兩個(gè)四邊形相似,則∠α的度數(shù)是______.

查看答案和解析>>

同步練習(xí)冊答案