【題目】如圖,在平面直角坐標系中,四邊形ABCD的各頂點坐標分別為A(1,0),B(2,0),C(2,2),D(0,1),四邊形BFGH的各頂點坐標分別為F(4,0),G(4,4),H(0,2),則下列說法正確的是( )
A. 四邊形ABCD與四邊形BFGH相似但不位似
B. 四邊形ABCD與四邊形BFGH位似但不相似
C. 四邊形ABCD與四邊形BFGH位似,且相似比為1∶
D. 四邊形ABCD與四邊形BFGH位似,且相似比為1∶2
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),點P為斜邊OB上的一動點,則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在網(wǎng)紅重慶,磁器口和洪崖洞是外地游客必到的打卡景點.現(xiàn)有一自行車隊計劃從磁器口到洪崖洞出發(fā)一段時間后,發(fā)現(xiàn)有貴重物品落在了磁器口,于是安排小南騎自行車以原速返回,剩下的成員速度不變向洪崖洞前進,小南取回物品后,改乘出租車追趕車隊(取物品、等車時間忽略不計),小南在追趕上自行車隊后仍乘坐出租車,再行駛10分鐘后遭遇堵車,在此期間,自行車隊反超出租車,擁堵30分鐘后交通恢復正常,出租車以原速開往洪崖洞,最終出租車和自行車隊同時到達,設自行車隊和小南行駛時間為t(分鐘),與磁器口距離s(千米),s與t的函數(shù)關系如圖所示,則在第二次相遇后,出租車還經(jīng)過了_____分鐘到達洪崖洞.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A(a、b)是一次函數(shù)y=x+m的圖像與反比例函數(shù)的圖像在第一象限的交點,且S△ABO=3。
①根據(jù)這些條件你能夠求出反比例函數(shù)的解析式嗎?如果能夠,請你求出來,如果不能,請說明理由。
②你能夠求出一次函數(shù)的函數(shù)關系式嗎?如果能,請你求出來,如果不能,請你說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中裝有9個黃球,13個黑球,11個紅球,它們除顏色外其余都相同.
(1)求從袋中摸出一個球是紅球的概率;
(2)現(xiàn)從袋中取出若干個黃球,井放入相同數(shù)量的黑球,若要使攪拌均與后從袋中摸出一個球是黑球的概率不小于,問至少要取出多少個黃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小正方形的邊長都為1,四邊形ABCD的頂點都在小正方形的頂點上.
(1)求四邊形ABCD的面積;
(2)∠BCD是直角嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在直線DF上,點B在直線AC上,若∠1=∠2,∠3=∠4,則∠A=∠F,請說明理由.
解:∵∠1=∠2(已知)
∠2=∠DGF
∴∠1=∠DGF(____________)
∴BD∥CE
∴∠3+∠C=180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°
∴ ∥ (同旁內(nèi)角互補,兩直線平行)
∴∠A=∠F( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,他手中持有的錢數(shù)(含備用零錢)y與售出的土豆千克數(shù)x的關系如圖所示,結合圖象回答下列問題:
(1)農(nóng)民自帶的零錢是______元,降價前他每千克土豆出售的價格是______元;
(2)降價后他按每千克0.8元將剩余土豆售完,這時他手中的錢(含備用零錢)是62元,求降價后的線段所表示的函數(shù)表達式并寫出它的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com