【題目】已知二次函數(shù)yx2x

(1)在平面直角坐標(biāo)系內(nèi),畫(huà)出該二次函數(shù)的圖象;

(2)根據(jù)圖象寫(xiě)出:當(dāng)x   時(shí),y>0;

當(dāng)0<x<4時(shí),y的取值范圍為   

【答案】(1)見(jiàn)解析;(2)x<﹣1x>3;﹣2≤y

【解析】

(1)先把解析式配成頂點(diǎn)式得到拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(1,2);再分別求出拋物線(xiàn)與坐標(biāo)軸的交點(diǎn)坐標(biāo),然后利用描點(diǎn)法畫(huà)二次函數(shù)圖象;

(2)①利用函數(shù)圖象寫(xiě)出拋物線(xiàn)在x軸上方所對(duì)應(yīng)的自變量的范圍即可;

②先確定x=4時(shí),y,然后利用函數(shù)圖象寫(xiě)出當(dāng)0<x<4時(shí)對(duì)應(yīng)的函數(shù)值的范圍.

解:(1)yx﹣1)2﹣2,

∴拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,頂點(diǎn)坐標(biāo)為(1,2);

當(dāng)x=0時(shí),yx2x=﹣,則拋物線(xiàn)與y軸交點(diǎn)坐標(biāo)為(0,﹣

當(dāng)y=0時(shí), x2x=0,解得x1=﹣1,x2=3,拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo)為(﹣1,0)、(3,0),

如圖,

(2)①當(dāng)x<﹣1x>3時(shí),y>0;

②當(dāng)0<x<4時(shí),﹣2≤y;

故答案為x<﹣1x>3;﹣2≤y

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商貿(mào)公司購(gòu)進(jìn)某種水果的成本為20元/千克,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種水果在未來(lái)48天的售價(jià)p(元/千克)與時(shí)間t(天)之間的函數(shù)表達(dá)式為

p

且其日銷(xiāo)售量y(kg)與時(shí)間t(天)的關(guān)系如下表:

時(shí)間t(天)

1

3

6

10

20

40

日銷(xiāo)售量y(kg)

118

114

108

100

80

40

(1)已知yt之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求第30天的日銷(xiāo)售量是多少?

(2)問(wèn):哪一天的銷(xiāo)售利潤(rùn)最大?最大日銷(xiāo)售利潤(rùn)為多少?

(3)在實(shí)際銷(xiāo)售的前24天中,公司決定每銷(xiāo)售1 kg水果就捐贈(zèng)n元利潤(rùn)(n<9)給“精準(zhǔn)扶貧”對(duì)象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地特產(chǎn)檳榔芋深受歡迎,某商場(chǎng)以7元/千克收購(gòu)了3 000千克優(yōu)質(zhì)檳榔芋,若現(xiàn)在馬上出售,每千克可獲得利潤(rùn)3元.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),近段時(shí)間內(nèi)檳榔芋的售價(jià)每天上漲0.2元/千克,為了獲得更大利潤(rùn),商家決定先貯藏一段時(shí)間后再出售.根據(jù)以往經(jīng)驗(yàn),這批檳榔芋的貯藏時(shí)間不宜超過(guò)100天,在貯藏過(guò)程中平均每天損耗約10千克.

(1)若商家將這批檳榔芋貯藏x天后一次性出售,請(qǐng)完成下列表格:

每千克檳榔芋售價(jià)

(單位:元)

可供出售的檳榔芋重量

(單位:千克)

現(xiàn)在出售

3 000

x天后出售

(2)將這批檳榔芋貯藏多少天后一次性出售最終可獲得總利潤(rùn)29 000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,航拍無(wú)人機(jī)從A處測(cè)得一幢建筑物頂部B處的仰角為45°、底部C處的俯角為65°,此時(shí)航拍無(wú)人機(jī)A處與該建筑物的水平距離AD80米.求該建筑物的高度BC(精確到1米).(參考數(shù)據(jù):sin65°=0.91,cos65°=0.42,tan65°=2.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=-x+3y軸交于點(diǎn)A,與反比例函數(shù)y=(k≠0)的圖象交于點(diǎn)C,過(guò)點(diǎn)CCBx軸于點(diǎn)B,AO=3BO,則反比例函數(shù)的解析式為( )

A. y= B. y=- C. y= D. y=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場(chǎng)需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時(shí),每件可獲利120元,每增加1件,當(dāng)天平均每件獲利減少2元.設(shè)每天安排x人生產(chǎn)乙產(chǎn)品.

(1)根據(jù)信息填表

產(chǎn)品種類(lèi)

每天工人數(shù)(人)

每天產(chǎn)量(件)

每件產(chǎn)品可獲利潤(rùn)(元)

15

(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤(rùn)比生產(chǎn)乙產(chǎn)品可獲得的利潤(rùn)多550元,求每件乙產(chǎn)品可獲得的利潤(rùn).

(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤(rùn)W(元)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,AB⊙O的直徑,,連接AC.

(1)求證:∠CAB=45°;

(2)如圖,直線(xiàn)l經(jīng)過(guò)點(diǎn)C,在直線(xiàn)l上取一點(diǎn)D,使BD=AB,BDAC相交于點(diǎn)E,連接AD,且AD=AE.

求證:直線(xiàn)l⊙O的切線(xiàn);

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣a(x+1)(x﹣3)(a>0)x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)E,過(guò)點(diǎn)Cx軸的平行線(xiàn),與拋物線(xiàn)交于點(diǎn)D,連接DE,延長(zhǎng)DEy軸于點(diǎn)F,連接AD、AF.

(1)點(diǎn)A的坐標(biāo)為____________,點(diǎn)B的坐標(biāo)為_________ ;

(2)判斷四邊形ACDE的形狀,并給出證明;

(3)當(dāng)a為何值時(shí),ADF是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)如今,“垃圾分類(lèi)”意識(shí)已深入人心,如圖是生活中的四個(gè)不同的垃圾分類(lèi)投放桶,分別寫(xiě)著:有害垃圾、廚余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小麗投放了兩袋垃圾.

(1)直接寫(xiě)出小明投放的垃圾恰好是“廚余垃圾”的概率;

(2)求小麗投放的兩袋垃圾不同類(lèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案